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Abbreviations

2D = Two-dimensional

AR = Aortic regurgitation

ASE = American Society of

Echocardiography

AV = Atrioventricular

CW = Continuous-wave

DT = Deceleration time

EACVI = European

Association of Cardiovascular

Imaging

EF = Ejection fraction

GLS = Global longitudinal

strain

HCM = Hypertrophic

cardiomyopathy

HFpEF = Heart failure with

preserved ejection fraction

HFrEF = Heart failure with

reduced ejection fraction

IVRT = Isovolumic relaxation
time

LA = Left atrial

LAP = Left atrial pressure

LV = Left ventricular

LVEDP = Left ventricular

end-diastolic pressure

LVEF = Left ventricular

ejection fraction

MAC = Mitral annular

calcification

MR = Mitral regurgitation

PASP = Pulmonary artery

systolic pressure

PCWP = Pulmonary capillary

wedge pressure

RV = Right ventricular

STE = Speckle-tracking

echocardiography

TR = Tricuspid regurgitation

Vp = Flow propagation

velocity
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Echocardiographic assessment of
left ventricular (LV) diastolic
function is an integral part of
the routine evaluation of patients
presenting with symptoms of
dyspnea or heart failure. The
2009 American Society of
Echocardiography (ASE) and
European Association of Echo-
cardiography (now European
Association of Cardiovascular
Imaging [EACVI]) guidelines for
diastolic function assessment
were comprehensive, including
several two-dimensional (2D)
and Doppler parameters to
grade diastolic dysfunction and
to estimate LV filling pressures.1

Notwithstanding, the inclusion
of many parameters in the guide-
lines was perceived to render
diastolic function assessment
too complex, because several
readers have interpreted the
guidelines as mandating all the
listed parameters in the docu-
ment to fall within specified
values before assigning a specific
grade. The primary goal of this
update is to simplify the
approach and thus increase the
utility of the guidelines in daily
clinical practice.

LV diastolic dysfunction is
usually the result of impaired
LV relaxation with or without
reduced restoring forces (and
early diastolic suction), and
increased LV chamber stiffness,
which increase cardiac filling
pressures. Thus, when perform-
ing an echocardiographic study
in patients with potential dia-
stolic dysfunction, one should
search for signs of impaired LV
relaxation, reduced restoring
forces and increased diastolic
stiffness. More important, LV
filling pressure should be esti-
mated because elevated LV dia-
stolic pressure in the absence of
increased LV end-diastolic vol-
ume is strong evidence in favor
of well-developed diastolic
dysfunction. In the majority of clinical studies, LV filling pressures
and diastolic function grade can be determined reliably by a few
simple echocardiographic parameters with a high feasibility. In addi-
tion, technical developments have emerged that provide new
indices that appear promising for studying LV diastolic function.
This update places more emphasis on applying the most useful,
reproducible, and feasible 2D and Doppler measurements from
the 2009 guidelines.

Before applying the guidelines, it is essential to consider what the term
LV filling pressures refers to. The term LV filling pressures can refer to mean
pulmonary capillary wedge pressure (PCWP) (which is an indirect esti-
mate of LV diastolic pressures), mean left atrial (LA) pressure (LAP), LV
pre-A pressure, mean LV diastolic pressure, and LVend-diastolic pressure
(LVEDP). The different LV and LA diastolic pressures mentioned above
(Figure 1) have different correlates with Doppler signals. For example,
in the early stages of diastolic dysfunction, LVEDP is the only abnormally
elevated pressure because of a large atrial pressure wave, while mean
PCWP and LAP remain normal. With tachycardia and/or increased LV
afterload, mean PCWP and LAP increase which provides the basis for
the diastolic stress test. Thus, it is important that one is clear onwhichpres-
sure is being estimated as there are different Doppler variables that corre-
latewith an increase inLVEDPonly versus those that reflect an increase in
both LAP and LVEDP. Although the current recommendations are
focused on echocardiographic techniques, it should be noted that both
nuclear scans and cardiac magnetic resonance can be used to evaluate
LV filling rates and volumes. Notably, measurements derived by both
techniques are affected by LV relaxation and LV filling pressures and
are quite similar to measurements and derivatives obtained from mitral
inflow velocities.

Tables 1 and 2 summarize the technical aspects, hemodynamic
determinants, and clinical applications including limitations of each of
the Doppler and 2D parameters.2-50 Doppler signals that occur at end-
diastole correlate best with LVEDP. These includemitral peak Avelocity
at tips level, A-wave duration at the annulus, Avelocity deceleration time
(DT), pulmonary vein peak Ar velocity, Ar velocity duration, Ar-A dura-
tion, and tissueDoppler–derivedmitral annular a0 velocity.Mitral peakE-
wave velocity, E/A ratio, E velocity DT, E/e0 ratio, pulmonary vein
systolic-to-diastolic velocity ratio, and peak velocity of tricuspid regurgita-
tion (TR) by continuous-wave (CW) Doppler relate best with earlier
occurring LV diastolic pressures (mean PCWP, pre-A pressure, and
mean LV diastolic pressure).
I. GENERAL PRINCIPLES FOR ECHOCARDIOGRAPHIC

ASSESSMENT OF LV DIASTOLIC FUNCTION

The application of the guidelines starts with taking note of the clin-
ical data, heart rate, blood pressure, 2D and Doppler findings with
respect to LV volumes/wall thickness, ejection fraction (EF), LA
volume, presence and severity of mitral valve disease as well as
the underlying rhythm. The guidelines are not necessarily appli-
cable to children or in the perioperative setting. This is an impor-
tant first step because there may be recommendations that are
specific to the underlying pathology. Second, the quality of the
Doppler signal as well as the limitations for each parameter should
be carefully examined. If a Doppler signal is suboptimal, that signal
should not be used in formulating conclusions about LV diastolic
function (Figures 2 and 3). Third, the presence of a single
measurement that falls within the normal range for a given age
group does not necessarily indicate normal diastolic function (see
below). Given the several hemodynamic factors that affect each
signal, some measurements may fall in the normal range despite
the presence of diastolic dysfunction, and none of the indices
should be used in isolation. Therefore, consistency between two
or more of the indices should be relied upon in an individual
patient. The echocardiographic indices of diastolic function



Figure 1 (Left) LV diastolic pressures recording. Arrows point to LV minimal pressure (min), LV rapid filling wave (RFW),
LV pre-A pressure (pre-A), A wave rise with atrial contraction and end-diastolic pressure (EDP). (Middle) LAP recording
showing ‘‘V’’ and ‘‘A’’ waves marked along with Y and X descent (Right) Simultaneous LV and LAP recording showing
early and late transmitral pressure gradients. Notice that LA ‘‘A wave’’ pressure precedes the late diastolic rise (LV
A wave) in LV pressure.
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should always be interpreted in a wider context that includes
clinical status and the other 2D and other Doppler parameters.
Although often overlooked in reporting, the underlying
pathology shown by 2D and color Doppler is critical to reaching
the correct conclusions about LV diastolic function. For example,
the algorithm for estimation of LV filling pressures is less likely to
be helpful in a patient with normal vital signs and normal 2D
and Doppler findings.

With respect to the grading of LV diastolic dysfunction, it is the
recommendation of the writing group to determine the grade of
diastolic function based on the presence or absence of elevated
LV filling pressures as a first step. While useful in some cases,
the lower feasibility and reproducibility of flow propagation veloc-
ity (Vp) and time intervals (TE-e0) led the writing group to place
less emphasis on their routine acquisition and analysis. The
writing group strived to recommend algorithms that are appli-
cable to most patients with cardiac disease. Notwithstanding this
effort, the algorithms are not 100% accurate. For the most suc-
cessful application of the guidelines, it is incumbent on the echo-
cardiographer to have a solid understanding of the physiologic
rationale behind each variable, the situations that make any given
variable less reliable, and the technical aspects and acquisition and
analysis of Doppler and 2D signals.

The following sections are applicable to the general population of
patients seen in an echocardiography laboratory but not in the pres-
ence of specific diseases or rhythm disorders, which are discussed
separately later on in the document.
II. DIAGNOSIS OF DIASTOLIC DYSFUNCTION IN THE

PRESENCE OF NORMAL LVEF

Differentiation between normal and abnormal diastolic function
is complicated by overlap between Doppler indices values in
healthy individuals and those with diastolic dysfunction.
Furthermore, normal aging is associated with a number of
changes in the heart and vascular system, especially slowing of
LV relaxation which may lead to diastolic dysfunction.
Therefore, filling patterns in the elderly resemble those observed
in mild diastolic dysfunction in younger patients (40–60 years),
and age should be taken into account when evaluating diastolic
function variables.51-65

The mechanisms of diastolic dysfunction in healthy sedentary
elderly appear to be due in part to increased LV stiffness
compared with younger individuals.63 Presumably there is also
slowing of myocardial relaxation in the elderly, which can account
for the decrease in mitral E/A ratio and in e0 velocity (Figure 4),
but the data on aging and relaxation are not entirely consistent
across the studies.64 Furthermore, apparently healthy older indi-
viduals may have undetected coronary artery disease or other
subclinical disorders that could lead to the wide normal ranges.
Some indices, however, are less age dependent, and this includes
E/e0 ratio, which is very rarely >14 in normal individuals,52

changes in mitral inflow velocities with Valsalva maneuver, and
the difference in duration between pulmonary vein Ar velocity
and mitral A velocity. The Valsalva maneuver can help distinguish
normal LV filling from pseudonormal filling (and whether restric-
tive LV filling is reversible or not) because a decrease in E/A ratio
of $50%, not caused by E and A velocities fusion, is highly spe-
cific for increased LV filling pressures and supports the presence
of diastolic dysfunction (Figures 5 and 6). The procedure should
be standardized by continuously recording mitral inflow using
pulsed-wave Doppler for 10 sec during the straining phase of
the maneuver.1,14 Likewise, an increase in pulmonary vein Ar
velocity duration versus mitral A duration (Ar-A) is consistent
with increased LVEDP and diastolic dysfunction. Pulmonary
artery systolic pressure (PASP), provided pulmonary vascular
disease is excluded, can identify patients with increased LV
filling pressures as resting values for estimated PASP are
relatively age independent (Table 3). In many patients, LV and
LA structural changes may help differentiate between normal
and abnormal diastolic function.1 Similar to LA enlargement in
the absence of chronic atrial arrhythmia, which is often a marker
of long-term or chronic elevation of LAP, pathologic LV hypertro-
phy is usually associated with increased LV stiffness and diastolic
dysfunction.1 Furthermore, in patients with heart failure with pre-
served EF (HFpEF), LV global longitudinal function is often



Table 1 Two-dimensional and Doppler methods for assessment of LV diastolic function

Variable Acquisition Analysis

Peak E-wave

velocity

(cm/sec)

1. Apical four-chamber with color flow imaging for optimal

alignment of PW Doppler with blood flow.

2. PW Doppler sample volume (1–3 mm axial size) between

mitral leaflet tips.
3. Use lowwall filter setting (100–200MHz) and low signal gain.

4. Optimal spectral waveforms should not display spikes

or feathering.

Peak modal velocity in early diastole (after ECG T wave) at the

leading edge of spectral waveform

Peak A-wave

velocity

(cm/sec)

1. Apical four-chamber with color flow imaging for optimal

alignment of PW Doppler with blood flow

2. PW Doppler sample volume (1–3 mm axial size) between

mitral leaflet tips.
3. Use lowwall filter setting (100–200MHz) and low signal gain.

4. Optimal spectral waveforms should not display spikes

or feathering.

Peak modal velocity in late diastole (after ECG P wave) at the

leading edge of spectral waveform

MV A duration

(msec)

1. Apical four-chamber with color flow imaging for optimal

alignment of PW Doppler with blood flow.

2. PW Doppler sample volume (1–3 mm axial size) at level of

mitral annulus (limited data on how duration compares
between annulus and leaflet tips)

3. Use lowwall filter setting (100–200MHz) and low signal gain.

4. Optimal spectral waveforms should not display spikes

or feathering.

Time interval from A-wave onset to end of A wave at zero

baseline. If E and A are fused (E velocity > 20 cm/sec when A

velocity starts), A-wave duration will often be longer because

of increased atrial filling stroke volume.

MV E/A ratio See above for proper technique of acquisition of E and

A velocities.

MV E velocity divided by A-wave velocity

MV DT (msec) Apical four-chamber: pulsed Doppler sample volume between
mitral leaflet tips

Time interval from peak E-wave along the slope of LV filling
extrapolated to the zero-velocity baseline.

Pulsed-wave

TDI e0 velocity
(cm/sec)

1. Apical four-chamber view: PW Doppler sample volume

(usually 5–10 mm axial size) at lateral and septal basal
regions so average e0 velocity can be computed.

2. Use ultrasound system presets for wall filter and lowest

signal gain.

3. Optimal spectral waveforms should be sharp and not
display signal spikes, feathering or ghosting.

Peak modal velocity in early diastole at the leading edge of

spectral waveform

Mitral E/e0 See above for acquisition of E and e0 velocities MV E velocity divided by mitral annular e0 velocity

LA maximum
volume index

(mL/BSA)

1. Apical four- and two-chamber: acquire freeze frames 1–2
frames before MV opening.

2. LA volume should be measured in dedicated views in which

LA length and transverse diameters are maximized.

Method of disks or area-lengthmethod and correct for BSA. Do
not include LA appendage or pulmonary veins in LA tracings

from apical four- and apical two-chamber views.

PV S wave
(cm/sec)

1. Apical four-chamber with color flow imaging to help position
pulsed Doppler sample volume (1–3 mm axial size).

2. Sample volume placed at 1–2 cm depth into right (or left)

upper PV.
3. Use lowwall filter setting (100–200MHz) and low signal gain.

4. Optimized spectral waveforms should not display signal

spikes or feathering.

Peak modal velocity in early systole at the leading edge of
spectral waveform

PV D wave
(cm/sec)

Same as for PV S wave. Peak modal velocity in early diastole after MV opening at
leading edge of spectral waveform

PV AR duration

(msec)

Apical four-chamber: sample volume placed at 1–2 cm depth

into right (or left) upper PV with attention to presence of
LA wall motion artifacts

Time interval from AR-wave onset to end of AR at zero baseline

PV S/D ratio See above for acquisition of pulmonary vein S and D velocities. PV S wave divided by D-wave velocity or PV S wave time-

velocity integral/PV D wave time-velocity integral.

CW Doppler:

TR systolic

jet velocity

(m/sec)

1. Parasternal and apical four-chamber view with color

flow imaging to obtain highest Doppler velocity

aligned with CW.

2. Adjust gain and contrast to display complete spectral
envelope without signal spikes or feathering

Peak modal velocity during systole at leading edge of spectral

waveform

(Continued )
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Table 1 (Continued )

Variable Acquisition Analysis

Valsalva

maneuver

Recording obtained continuously through peak inspiration and

as patient performs forced expiration for 10 sec with

mouth and nose closed.

Change in MV E velocity and E/A ratio during peak strain and

following release

Secondary measures

Color

M-mode
Vp (cm/sec)

Apical four-chamber with color flow imaging for M-mode

cursor position, shift color baseline in direction of mitral
valve inflow to lower velocity scale for red/yellow inflow

velocity profile

Slope of inflow from MV plane into LV chamber during early

diastole at 4-cm distance

IVRT Apical long-axis or five-chamber view, using CW Doppler and

placing sample volume in LV outflow tract to
simultaneously display end of aortic ejection and onset of

mitral inflow.

Time between aortic valve closure and MV opening. For IVRT,

sweep speed should be 100 mm/sec.

TE-e0 Apical four-chamber view with proper alignment to acquire
mitral inflow at mitral valve tips and using tissue Doppler

to acquire septal and lateral mitral annular velocities.

Time interval between peak of R wave in QRS complex and
onset of mitral E velocity is subtracted from time interval

between QRS complex and onset of e0 velocity. RR intervals

should be matched and gain and filter settings should be

optimized to avoid high gain and filter settings. For time
intervals, sweep speed should be 100 mm/sec.

A, atrial filling; AR, Atrial reversal; BSA, body surface area; CW, continuous wave; D, diastole; e0, early diastolic; E, early filling; ECG, electrocar-
diographic; IVRT, isovolumic relaxation time; LA, left atrium;MV, mitral valve;PV, pulmonary vein;PW, pulsed-wave;S, systole; TDI, tissue Doppler

imaging; TR, tricuspid regurgitation.

All Doppler and M-mode recordings are preferably acquired at a sweep speed of 100 mm/sec.
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impaired and thus may be used to differentiate between normal
and abnormal myocardial function.66 Although not an index of
LV diastolic function, abnormal LV longitudinal systolic function
can be detected by measurements of the mitral annular plane sys-
tolic excursion using M-mode, tissue Doppler–derived mitral
annulus systolic velocity, and LV global longitudinal strain (GLS)
by speckle-tracking. This approach has not been widely tested,
but in patients with normal EFs and inconclusive data after eval-
uating diastolic filling, the finding of impaired GLS and reduced
s0 velocity can be used as an indication of myocardial dysfunction.
The reduced longitudinal strain in patients with HFpEF is consis-
tent with several studies that have demonstrated reduced systolic
mitral annular velocity in this patient population. It is also
consistent with the fact that LV systolic and diastolic functions
are tightly coupled.

In summary, the following four variables should be evaluated
when determining whether LV diastolic function is normal
(Figure 7) or abnormal. The presence of several abnormal findings
as well as cutoff values with high specificity for myocardial disease
is recommended to decrease false positive diagnoses of diastolic
dysfunction. The four recommended variables and their abnormal
cutoff values are annular e0 velocity (septal e0 < 7 cm/sec, lateral
e0 < 10 cm/sec), average E/e0 ratio > 14, LA maximum volume in-
dex > 34 mL/m2, and peak TR velocity > 2.8 m/sec. On the basis
of the writing group’s collective expert opinion, average E/e0 ratio is
recommended for simplification. Although E/e0 ratio may be ob-
tained at septal or lateral annulus, and different values exist because
of the normally higher lateral annular velocities, an average E/e0 ra-
tio > 14 is used throughout this document and is consistent with
recent studies in normal subjects.52 It is recognized that at times
only the lateral e0 or septal e0 velocity is available and clinically valid
and in these circumstances a lateral E/e0 ratio > 13 or a septal E/e0 >
15 is considered abnormal. The latter sentence applies to labora-
tories that acquire only septal or lateral velocities. The above are
general guidelines for annular velocities and ratios. Age appropriate
cutoff values, when available, should be considered when evaluating
older individuals. LA maximum volume index is recommended and
not LA anteroposterior diameter by M-mode, as LA enlargement
can occur in the medial-lateral and superior-inferior directions
only, resulting in an increased LA volume while the chamber ante-
roposterior diameter is still within the normal range.

LV diastolic function is normal if more than half of the available
variables do not meet the cutoff values for identifying abnormal
function. LV diastolic dysfunction is present if more than half of
the available parameters meet these cutoff values. The study is
inconclusive if half of the parameters do not meet the cutoff values
(Figure 8A). For example, a 60-year-old patient with a septal e0 ve-
locity of 6 cm/sec, septal E/e0 ratio of 10, LA maximum volume
index of 30 mL/m2, but no recorded TR signal has normal dia-
stolic function.

Key Points
1. The four recommended variables for identifying diastolic dysfunction and their

abnormal cutoff values are annular e0 velocity: septal e0 < 7 cm/sec, lateral e0 <

10 cm/sec, average E/e0 ratio > 14, LA volume index > 34mL/m2, and peak TR velocity
> 2.8 m/sec.

2. LV diastolic function is normal ifmore thanhalf of the available variables donotmeet

the cutoff values for identifying abnormal function. LV diastolic dysfunction is pre-

sent if more than half of the available parameters meet these cutoff values. The study

is inconclusive if half of the parameters do not meet the cutoff values.
III. ECHOCARDIOGRAPHIC ASSESSMENT OF LV FILLING

PRESSURES AND DIASTOLIC DYSFUNCTION GRADE

The key variables recommended for assessment of LV diastolic
function grade include mitral flow velocities, mitral annular e0 ve-
locity, E/e0 ratio, peak velocity of TR jet, and LA maximum volume
index (Figure 8B). Supplementary methods are pulmonary vein ve-
locities and as a means to identify mild reduction in systolic



Table 2 Utility, advantages and limitations of variables used to assess LV diastolic function

Variable Utility and physiologic background Advantages Limitations

Mitral E velocity E-wave velocity reflects the LA-LV pressure gradient

during early diastole and is affected by alterations in

the rate of LV relaxation and LAP.

1. Feasible and reproducible.

2. In patients with dilated cardiomyopathy and

reduced LVEF, mitral velocities correlate
better with LV filling pressures, functional

class, and prognosis than LVEF.

1. In patients with coronary artery disease and

patients with HCM in whom LVEF is >50%,

mitral velocities correlate poorly with LV filling
pressures

2. More challenging to apply in patients with

arrhythmias.

3. Directly affected by alterations in LV volumes
and elastic recoil.

4. Age dependent (decreasing with age).

Mitral A velocity A-wave velocity reflects the LA-LV pressure gradient
during late diastole, which is affected by LV

compliance and LA contractile function.

Feasible and reproducible. 1. Sinus tachycardia, first-degree AV block and
paced rhythm can result in fusion of the E and A

waves. If mitral flow velocity at the start of atrial

contraction is >20 cm/sec, A velocity may

be increased.
2. Not applicable in AF/atrial flutter patients.

3. Age dependent (increases with aging).

Mitral E/A ratio Mitral inflow E/A ratio and DT are used to identify the

filling patterns: normal, impaired relaxation, PN,
and restrictive filling.

1. Feasible and reproducible.

2. Provides diagnostic and prognostic information.
3. In patients with dilated cardiomyopathy, filling

patterns correlate better with filling pressures,

functional class, and prognosis than LVEF.
4. A restrictive filling pattern in combination with LA

dilation in patients with normal EFs is

associated with a poor prognosis similar to a

restrictive pattern in dilated cardiomyopathy.

1. The U-shaped relation with LV diastolic function

makes it difficult to differentiate normal from
PN filling, particularly with normal LVEF,

without additional variables.

2. If mitral flow velocity at the start of atrial
contraction is >20 cm/sec, E/A ratio will be

reduced due to fusion.

3. Not applicable in AF/atrial flutter patients.

4. Age dependent (decreases with aging).

Mitral E-velocity

DT

DT is influenced by LV relaxation, LV diastolic

pressures following mitral valve opening, and LV

stiffness.

1. Feasible and reproducible.

2. A short DT in patients with reduced LVEFs

indicates increased LVEDP with high
accuracy both in sinus rhythm and in AF.

1. DT does not relate to LVEDP in normal LVEF

2. Should not be measured with E and A fusion due

to potential inaccuracy.
3. Age dependent (increases with aging).

4. Not applied in atrial flutter.

Changes in

mitral inflow
with Valsalva

maneuver

Helps distinguishing normal from PN filling patterns. A

decrease of E/A ratio of $50% or an increase in A-
wave velocity during themaneuver, not caused by E

and A fusion, are highly specific for increased LV

filling pressures.

When performed adequately under standardized

conditions (keeping 40 mm Hg intrathoracic
pressure constant for 10 sec) accuracy in

diagnosing increased LV filling pressures is good.

1. Not every patient can perform this maneuver

adequately. The patient must generate and
sustain a sufficient increase in intrathoracic

pressure, and the examiner needs to maintain

the correct sample volume location between

the mitral leaflet tips during the maneuver.
2. It is difficult to assess if it is not standardized.

Mitral ‘‘L’’

velocity

Markedly delayed LV relaxation in the setting of

elevated LV filling pressures allows for ongoing LV
filling in mid diastole and thus L velocity. Patients

usually have bradycardia.

When present in patients with known cardiac disease

(e.g., LVH, HCM), it is specific for elevated LV filling
pressures. However, its sensitivity is overall low.

Rarely seen in normal LV diastolic function when the

subject has bradycardia but it is then usually
<20 cm/sec.

IVRT IVRT is#70msec in normal subjects and is prolonged

in patients with impaired LV relaxation but normal
LV filling pressures. When LAP increases, IVRT

1. Overall feasible and reproducible.

2. IVRT can be combined with other mitral inflow
parameters as E/A ratio to estimate LV filling

pressures in patients with HFrEF.

1. IVRT duration is in part affected by heart rate and

arterial pressure.
2. More challenging to measure and interpret with

tachycardia.
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shortens and its duration is inversely related to LV
filling pressures in patients with cardiac disease.

3. It can be combined with LV end-systolic
pressure to estimate the time constant of LV

relaxation (t).

4. It can be applied in patients with mitral stenosis
in whom the same relation with LV filling

pressures described above holds.

5. In patients with MR and in those after MV

replacement or repair, it can be combined with
TE-e0 to estimate LV filling pressures.

3. Results differ on the basis of using CW or PW
Doppler for acquisition.

Pulsed-wave

TDI-derived
mitral annular

early diastolic

velocity: e0

A significant association is present between e0 and the

time constant of
LV relaxation (t) shown in both animals and

humans.

The hemodynamic determinants of e0 velocity include
LV relaxation, restoring forces and filling pressure.

1. Feasible and reproducible.

2. LV filling pressures have a minimal effect on e0 in
the presence of impaired LV relaxation.

3. Less load dependent than conventional blood-

pool Doppler parameters.

1. Limited accuracy in patients with CAD and

regional dysfunction in the sampled
segments, significant MAC, surgical rings or

prosthetic mitral valves and pericardial disease.

2. Need to sample at least two sites with precise

location and adequate size of sample volume.
3. Different cutoff values depending on the sampling

site for measurement.

4. Age dependent (decreases with aging).

Mitral E/e0 ratio e0 velocity can be used to correct for the effect of LV
relaxation on mitral E velocity, and E/e0 ratio can be

used to predict LV filling pressures.

1. Feasible and reproducible.
2. Values for average E/e0 ratio < 8 usually indicate

normal LV filling pressures, values > 14 have

high specificity for increased LV filling
pressures.

1. E/e0 ratio is not accurate in normal subjects,
patients with heavy annular calcification,

mitral valve and pericardial disease.

2. ‘‘Gray zone’’ of values in which LV filling
pressures are indeterminate.

3. Accuracy is reduced in patients with CAD and

regional dysfunction at the sampled segments.

4. Different cutoff values depending on the site used
for measurement.

TE-e0 time interval Can identify patients with diastolic dysfunction due to

delayed onset of e0 velocity compared with onset of

mitral E velocity.

1. Ratio of IVRT to TE-e0 can be used to estimate LV

filling pressures in normal subjects and

patients with mitral valve disease.
2. TE-e0 can be used to differentiate patients with

restrictive cardiomyopathy who have a

prolonged time interval from those with
pericardial constriction in whom it is not

usually prolonged.

More challenging to acquire satisfactory signals with

close attention needed to location, gain, filter

settings as well as matching RR intervals.

LA maximum

volume index

LA volume reflects the cumulative effects of increased

LV filling pressures over time. Increased LA volume
is an independent predictor of death, heart failure,

AF, and ischemic stroke.

1. Feasible and reproducible.

2. Provides diagnostic and prognostic information
about LV diastolic dysfunction and chronicity

of disease.

3. Apical four-chamber view provides visual
estimate of LA and RA size which confirms LA

is enlarged.

1. LA dilation is seen in bradycardia, high-output

states, heart transplants with biatrial technique,
atrial flutter/fibrillation, significant mitral valve

disease, despite normal LV diastolic function.

2. LA dilatation occurs in well-trained athletes who
have bradycardia and are well hydrated.

3. Suboptimal image quality, including LA

foreshortening, in technically challenging

studies precludes accurate tracings.
4. It can be difficult to measure LA volumes in

patients with ascending and descending aortic

aneurysms as well as in patients with large

interatrial septal aneurysms.

(Continued )
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Table 2 (Continued )

Variable Utility and physiologic background Advantages Limitations

Pulmonary veins:

systolic (S)

velocity, diastolic

(D) velocity,
and S/D ratio

S-wave velocity (sum of S1 and S2) is influenced by

changes in LAP, LA contractility, and LV and RV

contractility.

D-wave velocity is mainly influenced by early
diastolic LV filling and compliance and it changes

in parallel with mitral E velocity.

Decrease in LA compliance and increase in LAP is

associated with decrease in S velocity and
increase in D velocity.

1. Reduced S velocity, S/D ratio < 1, and systolic

filling fraction (systolic VTI/total forward flow VTI)

< 40% indicate increased mean LAP in patients

with reduced LVEFs.
2. In patients with AF, DT of diastolic velocity (D) in

pulmonary vein flow can be used to estimate

mean PCWP.

1. Feasibility of recording PV inflow can be

suboptimal, particularly in ICU patients.

2. The relationship between PV systolic filling fraction

and LAP has limited accuracy in patients with
normal LVEF, AF, mitral valve disease and HCM.

Ar-A duration The time difference between duration of PV flow and

mitral inflow during atrial contraction is associated
with LV pressure rise because of atrial contraction

and LVEDP. The longer the time difference, the

higher LVEDP.

1. PV Ar duration > mitral A duration by 30 msec

indicates an increased LVEDP.
2. Independent of age and LVEF.

3. Accurate in patients with MR and patients

with HCM.

1. Adequate recordings of Ar duration may not be

feasible by TTE in several patients.
2. Not applicable in AF patients.

3. Difficult to interpret in patients with sinus

tachycardia or first-degree AV block with E and

A fusion.

CW Doppler

TR systolic

jet velocity

A significant correlation exists between systolic PA

pressure and noninvasively derived LAP.

In the absence of pulmonary disease, increased
systolic PA pressure suggests elevated LAP.

Systolic PA pressure can be used as an adjunctive

parameter of mean LAP.

Evidence of pulmonary hypertension has prognostic
implications.

1. Indirect estimate of LAP.

2. Adequate recording of a full envelope is not always

possible, though intravenous agitated saline or
contrast increases yield.

3. With severe TR and low systolic RV-RA pressure

gradient, accuracy of calculation is dependent

on reliable estimation of RA systolic pressure.

CW Doppler PR

end-diastolic

velocity

A significant correlation exists between diastolic PA

pressure and invasively as well as noninvasively

derived LAP.
In the absence of pulmonary disease, increased

diastolic PA pressure is consistent with

elevated LAP.

Diastolic PA pressure can be used as an adjunctive

parameter of mean LAP.

Evidence of pulmonary hypertension has prognostic
implications.

1. Adequate recording of a full PR jet envelope is not

always possible though intravenous contrast

increases yield.
2. Accuracy of calculation is dependent on the

reliable estimation of mean RAP.

3. If mean PA pressure is >40 mm Hg or PVR

>200 dynes$s$cm�5, PA diastolic pressure is
higher by >5 mm Hg over mean PCWP.

Color M-mode

Vp: Vp, and

E/Vp ratio

Vp correlates with the time constant of LV relaxation

(t) and can be used as a parameter of LV relaxation.

E/Vp ratio correlates with LAP.

1. Vp is reliable as an index of LV relaxation in patients

with depressed LVEFs and dilated left ventricle

but not in patients with normal EFs.
2. E/Vp $ 2.5 predicts PCWP >15 mm Hg with

reasonable accuracy in patients with

depressed EFs.

1. There are different methods for measuring mitral-

to-apical flow propagation.

2. In patients with normal LV volumes and LVEF but
elevated LV filling pressures, Vp can be

misleadingly normal.

3. Lower feasibility and reproducibility.
4. Angulation between M-mode cursor and flow

results in erroneous measurements.

AR, Atrial reversal velocity in pulmonary veins; PA, pulmonary artery; PN, pseudonormal; PR, pulmonary regurgitation; PV, pulmonary vein; PVR, pulmonary vascular resistance; RA, right
atrial; TDI, tissue Doppler imaging.
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Figure 2 Tissue Doppler recordings of septal mitral annular velocities. In (A), Doppler settings and sample volume location are
optimal, whereas in (B) the sample volume is placed in the ventricular septum (not annulus). Doppler setting are suboptimal in (C)
with low gain and in (D) with high filter.
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Figure 3 Tissue Doppler recordings of lateral mitral annular velocities. In (A), Doppler sample volume is located in part in LV cavity. In
(B) the sample volume is in basal segment of lateral wall, in (C) the location is partly outside the heart altogether, and in (D) it is located
in the left atrium above the mitral annulus.
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function, LV GLS by speckle-tracking echocardiography (STE).
Because patients with reduced LVEFs also have impaired diastolic
function (examples shown in Figures 9–11 for heart failure with
reduced EF [HFrEF]), the evaluation has a different focus than in
patients with normal LVEF ($50%) (examples shown in
Figures 12–15 for HFpEF). The main reason for evaluating
diastolic function in patients with reduced EFs is to estimate LV
filling pressure. As in several other patient groups, it is important
to look for consistency between the different parameters. When
using such an integrated approach, a reliable estimate of LV
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Figure 4 The figure shows the three independent determi-
nants of e0, which are LV relaxation, restoring forces, and
lengthening load. Rate of relaxation reflects decay of active
fiber force. Restoring forces which account for diastolic suc-
tion, are illustrated by an elastic spring which is compressed
to a dimension (Lmin) less than its resting length (L0) and re-
coils back to resting length when the compression is
released. Lengthening load is the pressure in the left atrium
at mitral valve opening, which ‘‘pushes’’ blood into the left
ventricle and thereby lengthens the ventricle. The figure is
based on data from Opdahl et al.35
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filling pressure can be achieved in most patients.67,68 Given the
presence of situations in which LAP and LVEDP are different
and because LAP is the pressure that relates better with mean
PCWP and thus pulmonary congestion symptoms at the time of
the echocardiographic examination, the algorithm is presented
with the premise of estimating mean LAP. The approach starts
with mitral inflow velocities and is applied in the absence of
atrial fibrillation (AF), significant mitral valve disease (at least
moderate mitral annular calcification [MAC], any mitral stenosis
or mitral regurgitation [MR] of more than moderate severity,
mitral valve repair or prosthetic mitral valve), LV assist devices,
left bundle branch block, and ventricular paced rhythm.

The proposed algorithm is based on expert consensus and
has not been validated. Because diastolic dysfunction is a result
of underlying myocardial disease in patients with reduced or
preserved LVEF, a rather similar approach can be considered in
these populations. When the mitral inflow pattern shows an E/
A ratio # 0.8 along with a peak E velocity of #50 cm/sec,
then mean LAP is either normal or low. The corresponding grade
of diastolic dysfunction is grade I. When the mitral inflow pattern
shows an E/A ratio $2, LA mean pressure is elevated and grade
III diastolic dysfunction is present. DT is usually short in these
patients (<160 msec) but in some patients it can exceed
160 msec in the presence of an E velocity > 120 cm/sec as it
takes a longer time for a higher E velocity to decelerate. In this
situation, the writing group recommends using only the E/A
ratio in the classification scheme. On the other hand, mitral
DT should be used for assessment of LV diastolic function in
patients with recent cardioversion to sinus rhythm who can
have a markedly reduced mitral A velocity because of LA stun-
ning at the time of the echocardiographic examination, thus
leading to an E/A ratio $ 2 despite the absence of elevated LV
filling pressures (Figure 16). Of note, in young individuals
(<40 years of age), E/A ratios > 2 may be a normal finding,51

and therefore in this age group other signs of diastolic dysfunc-
tion should be sought. Importantly, normal subjects have normal
annular e0 velocity which can be used to verify the presence of
normal diastolic function.

When mitral inflow shows an E/A # 0.8 and the peak E veloc-
ity is >50 cm/sec, or if the E/A ratio is >0.8 but <2, other signals
are necessary for accurate evaluation. We recommend the
following parameters: peak velocity of TR jet by CW Doppler
obtained from multiple views, E/e0 ratio and LA maximum vol-
ume index. A TR jet peak velocity > 2.8 m/sec supports the pres-
ence of elevated LV filling pressures, and the same conclusion can
be reached when E/e0 ratio is elevated. In patients in whom
one of the three main criteria is not available, the ratio of pulmo-
nary vein peak systolic to peak diastolic velocity or systolic time-
velocity integral to diastolic time-velocity integral < 1 supports
the presence of elevated LV filling pressures. In healthy young
people (<40 years of age), pulmonary venous S/D ratio can be
<1, but the normality of findings including mitral annular e0 ve-
locity and LA maximum volume index should rarely cause confu-
sion. Importantly, among the above mentioned parameters,
the peak velocity of TR jet by CW Doppler provides a direct es-
timate of PASP when combined with right atrial pressure.
Because it is uncommon to have primary pulmonary arterial dis-
ease coexisting with HFrEF, an elevated PASP supports the pres-
ence of elevated LAP.

If all three parameters are available for interpretation and only
one of three meets the cutoff value, then LAP is normal and there
is grade I diastolic dysfunction. If two of three or all three available
parameters meet the corresponding cutoff values then LAP is
elevated and there is grade II diastolic dysfunction. If only one
parameter is available, LAP and grade of diastolic dysfunction
should not be reported and likewise if there is discrepancy be-
tween the only two available parameters. The assessment of LV
filling pressures is important in patients with HFrEF as it can suc-
cessfully guide medical treatment.69

In patients with preserved EFs, the same initial evaluation of
clinical presentation and 2D and color Doppler echocardio-
graphic findings such as LVEF, regional wall motion abnormal-
ities, LV hypertrophy, LA maximum volume index and
significant mitral valve disease is performed to aid the assessment
of LV diastolic function. Cardiac structural as well as functional
information should be used when assessing diastolic function in
patients with preserved EFs. In particular an enlarged LA that is
clearly larger than the right atrium in the optimally aligned apical
four-chamber view is strongly suggestive of chronically elevated
LV filling pressure, provided conditions such as anemia, atrial ar-
rhythmias and mitral valve disease can be excluded. Athletes may
also have enlarged atria without increased LV filling pressures.
However, a normal LA volume index does not exclude the pres-
ence of diastolic dysfunction when other findings are consistent
with its presence. In particular, a normal LA volume is often
noted in patients in the earliest stage of diastolic dysfunction
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Figure 5 Valsalva maneuver in a patient with grade II diastolic dysfunction. At baseline, E/A ratio is 1.3 (left) and decreases to 0.6
(impaired relaxation pattern) with Valsalva.

p
ri
n
t
&
w
e
b
4
C
=
F
P
O

Figure 6 Continuous recording of mitral inflow during standard-
ized Valsalva maneuver for 10 sec showing the decrease in E/A
ratio with straining, which is consistent with elevated LV filling
pressures.
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and in situations with an acute increase in LV filling pressures. For
LV hypertrophy (most reliably confirmed by LV mass that ex-
ceeds gender-specific normal range53), the finding of pathologic
LV hypertrophy is consistent with diastolic dysfunction.
Elevated PASP calculated from the TR jet (Figure 17) is strongly
suggestive of elevated LV filling pressure unless pulmonary paren-
chymal or vascular disease is known to be present.

Similar to patients with depressed EFs, LAP is likely normal in
the presence of an E/A ratio # 0.8 along with a peak E velocity
of #50 cm/sec in patients with structural heart disease and normal
EF. The corresponding grade of diastolic dysfunction is grade I. In
patients with an E/A # 0.8 along with a peak E velocity of
>50 cm/sec, or an E/A ratio > 0.8 but < 2, additional parameters
should be examined. As in patients with depressed LVEFs, these
include LA maximum volume index, peak velocity of TR jet and
average E/e0 ratio. Importantly, all three indices have been shown
to be of value in identifying patients with HFpEF.45,70,71 Cutoff
values for elevated LAP are average E/e0 > 14, LA maximum
volume index > 34 mL/m2 and TR jet > 2.8 m/sec. Because
the pulmonary venous S/D ratio often is <1 in healthy young
individuals, this index is of little value in patients with normal
LVEF.

When two of three or all three variables meet the cutoff
threshold, mean LAP is elevated and there is grade II diastolic
dysfunction. Conversely, if two of three or all three variables do
not meet the cutoff threshold, then LAP is normal and grade I dia-
stolic dysfunction is present. If one of two available parameters
gives opposite information to the other signal, or if there is only
one parameter with satisfactory quality for analysis, neither LAP
nor diastolic grade should be reported. In the presence of an E/
A ratio $ 2, grade III diastolic dysfunction is present. Table 4 pre-
sents a summary of the expected findings for the different grades
of diastolic dysfunction.

Key Points
1. In patients with reduced LVEFs, transmitral inflow pattern is usually sufficient to

identify patients with increased LAP and DT of mitral E velocity is an important pre-

dictor of outcome.
2. In patients with preserved LVEFs, several parameters, including 2D variables, are

often needed to estimate LAP.

3. In patients with depressed EFs and in patients with normal EFs and myocardial dis-

ease, if E/A ratio is #0.8 along with a peak E velocity of #50 cm/sec, then mean

LAP is either normal or low and patient has grade I diastolic dysfunction.

4. In patients with depressed EFs and in patients with normal EFs and myocardial dis-

ease, if E/A ratio is $ 2, LA mean pressure is elevated and grade III diastolic dysfunc-

tion is present. DT is usually short in patientswithHFrEF and restrictive filling pattern

(<160 msec). However, in patients with HFpEF, DTcan be normal despite elevated LV

filling pressures.

5. In patients with depressed EFs and in patients with normal EFs and myocardial

disease, E/A ratio # 0.8 along with a peak E velocity of >50 cm/sec, or an E/A

ratio > 0.8 but < 2, additional parameters are needed. These include peak TR ve-

locity, E/e0 ratio and LA maximum volume index. Their cutoff values to

conclude elevated LAP are peak velocity of TR jet >2.8 m/sec, average E/e0 ra-
tio>14, and LA maximum volume index > 34 mL/m2. If more than half or all

of the variables meet the cutoff values, then LAP is elevated and grade II dia-

stolic dysfunction is present. If only one of three available variables meets

the cutoff value, then LAP is normal and grade I diastolic dysfunction is pre-

sent. In case of 50% discordance or with only one available variable, findings

are inconclusive to estimate LAP.

6. In patients with depressed LVEFs, pulmonary vein S/D ratio may be used if one

of the three main parameters is not available. A ratio < 1 is consistent with

increased LAP.



T
a
b
le

3
P
ro
p
o
rt
io
n
o
f
n
o
rm

a
ls
u
b
je
c
ts

w
it
h
a
b
n
o
rm

a
lL

A
v
o
lu
m
e
in
d
e
x
a
n
d
D
o
p
p
le
r
v
e
lo
c
it
ie
s

P
a
ra
m
e
te
r

2
0
–4

0
y

4
0
–6

0
y

$
6
0
y

G
lo
b
a
l
c
o
h
o
rt

T
o
ta
l

(N
=
1
7
2
)

n
/N

(%
)

M
a
le

(N
=
7
9
)

n
/N

(%
)

F
e
m
a
le

(N
=
9
3
)

n
/N

(%
)

T
o
ta
l

(N
=
1
9
4
)

n
/N

(%
)

M
a
le

(N
=
8
0
)

n
/N

(%
)

F
e
m
a
le

(N
=
1
1
4
)

n
/N

(%
)

T
o
ta
l

(N
=
8
3
)

n
/N

(%
)

M
a
le

(N
=
3
9
)

n
/N

(%
)

F
e
m
a
le

(N
=
4
4
)

n
/N

(%
)

T
o
ta
l

(N
=
4
4
9
)

n
/N

(%
)

M
a
le

(N
=
1
9
8
)

n
/N

(%
)

F
e
m
a
le

(N
=
2
5
1
)

n
/N

(%
)

S
e
p
ta
le

0 <
8
c
m
/s
e
c

2
/1
7
0
(1
.2
)

2
/7
9
(2
.5
)
0
/9
1
(0
)

3
8
/1
9
3
(1
9
.7
)
1
3
/8
0
(1
6
.3
)
2
5
/1
1
3
(2
2
.1
)
4
6
/8
3
(5
5
.4
)
2
2
/3
9
(5
6
.4
)
2
4
/4
4
(5
4
.5
)
8
6
/4
4
6
(1
9
.3
)
3
7
/1
9
8
(1
8
.7
)
4
9
/2
4
8
(1
9
.8
)

L
a
te
ra
le

0 <
8
c
m
/s
e
c

2
/1
6
7
(1
.2
)

1
/7
6
(1
.3
)
1
/9
1
(1
.1
)
1
1
/1
9
2
(5
.7
)

4
/8
0
(5
.0
)

7
/1
1
2
(6
.3
)

1
5
/7
9
(1
9
.0
)

5
/3
6
(1
3
.9
)
1
0
/4
3
(2
3
.3
)
2
8
/4
3
8
(6
.4
)

1
0
/1
9
2
(5
.2
)

1
8
/2
4
6
(7
.3
)

L
a
te
ra
le

0 <
1
0
c
m
/s
e
c

3
/1
6
7
(1
.8
)

2
/7
6
(2
.6
)
1
/9
1
(1
.1
)
3
0
/1
9
2
(1
5
.6
)

9
/8
0
(1
1
.3
)
2
1
/1
1
2
(1
8
.8
)
4
1
/7
9
(5
1
.9
)
1
7
/3
6
(4
7
.2
)
2
4
/4
3
(5
5
.8
)
7
4
/4
3
8
(1
6
.9
)
2
8
/1
9
2
(1
4
.6
)
4
6
/2
4
6
(1
8
.7
)

A
ve

ra
g
e
(s
e
p
ta
l-

la
te
ra
l)
E
/e

0 >
1
4

0
/1
5
8
(0
)

0
/7
5
(0
)

0
/8
3
(0
)

3
/1
8
4
(1
.6
)

1
/7
6
(1
.3
)

2
/1
0
8
(1
.9
)

1
/7
8
(1
.3
)

1
/3
6
(2
.8
)

0
/4
2
(0
)

4
/4
2
0
(1
.0
)

2
/1
8
7
(1
.1
)

2
/2
3
3
(0
.9
)

S
e
p
ta
lE

/e
0 >

1
5

0
/1
6
2
(0
)

0
/7
8
(0
)

0
/8
4
(0
)

2
/1
8
5
(1
.1
)

1
/7
6
(1
.3
)

1
/1
0
9
(0
.9
)

3
/8
1
(3
.7
)

2
/3
8
(5
.3
)

1
/4
3
(2
.3
)

5
/4
2
8
(1
.2
)

3
/1
9
2
(1
.6
)

2
/2
3
6
(0
.8
)

L
a
te
ra
lE

/e
0 >

1
3

0
/1
5
9
(0
)

0
/7
5
(0
)

0
/8
4
(0
)

3
/1
8
4
(1
.6
)

1
/7
6
(1
.3
)

2
/1
0
8
(1
.9
)

0
/7
8
(0
)

0
/3
6
(0
)

0
/4
2
(0
)

3
/4
2
1
(0
.7
)

1
/1
8
7
(0
.5
)

2
/2
3
4
(0
.9
)

L
A
v
o
lu
m
e
in
d
e
x
>

3
4
m
L
/m

2
(*
)

1
0
/1
1
7
(8
.5
)
4
/5
3
(7
.5
)
6
/6
4
(9
.4
)
1
8
/1
2
7
(1
4
.2
)

7
/5
1
(1
3
.7
)

1
1
/7
6
(1
4
.5
)

3
/5
0
(6
.0
)

2
/2
4
(8
.3
)

1
/2
6
(3
.8
)

3
1
/2
9
4
(1
0
.5
)
1
3
/1
2
8
(1
0
.2
)
1
8
/1
6
6
(1
0
.8
)

S
P
A
P
>
3
6
m
m

H
g

1
/1
0
6
(0
.9
)

1
/4
8
(2
.1
)
0
/5
8
(0
.0
)

0
/1
3
1
(0
.0
)

0
/5
7
(0
.0
)

0
/7
4
(0
.0
)

0
/5
7
(0
.0
)

0
/2
4
(0
.0
)

0
/3
3
(0
.0
)

1
/2
9
4
(0
.3
)

1
/1
2
9
(0
.8
)

0
/1
6
5
(0
.0
)

S
P
A
P
>
4
5
m
m

H
g

0
/1
0
6
(0
.0
)

0
/4
8
(0
.0
)
0
/5
8
(0
.0
)

0
/1
3
1
(0
.0
)

0
/5
7
(0
.0
)

0
/7
4
(0
.0
)

0
/5
7
(0
.0
)

0
/2
4
(0
.0
)

0
/3
3
(0
.0
)

0
/2
9
4
(0
.0
)

0
/1
2
9
(0
.0
)

0
/1
6
5
(0
.0
)

S
P
A
P
,
S
ys
to
lic

p
u
lm

o
n
a
ry

a
rt
e
ry

p
re
s
su

re
.

*L
A
v
o
lu
m
e
in
d
e
x
>
3
4
m
L
/m

2
b
y
b
ip
la
n
e
S
im

p
s
o
n
m
e
th
o
d
(a
d
a
p
te
d
fr
o
m

C
a
b
a
lle
ro

e
t
a
l.5

2
).

288 Nagueh et al Journal of the American Society of Echocardiography
April 2016
IV. CONCLUSIONS ON DIASTOLIC FUNCTION IN THE
CLINICAL REPORT

Although several invasive parameters of LV diastolic function such as
the time constant of LV relaxation (t) or LV chamber stiffness may be
inferred or derived from Doppler echocardiographic findings, the as-
sociation between invasive and noninvasive parameters is not perfect.
Furthermore to date, there is no specific targeted treatment for these
abnormalities that has proved useful in clinical trials. In comparison,
specific comments on the status of LV filling pressures are more help-
ful to the referring physician in terms of narrowing a differential diag-
nosis. The conclusion could be one of three options: normal, elevated
or cannot be determined (Table 5 shows examples from several lab-
oratories on reporting findings about LV diastolic function). The
writing group believes it is important to include this conclusion
when feasible, particularly in patients referred with symptoms of dys-
pnea or diagnosis of ‘‘heart failure.’’ In addition, the grade of LV dia-
stolic dysfunction should be included in the reports along with the
estimated LV filling pressures. The rationale for this recommendation
comes from several single center and epidemiologic studies showing
the independent and incremental prognostic information provided by
LV diastolic dysfunction grade in several settings including HFrEF,
HFpEF and acute myocardial infarction.72-87 Finally, when feasible,
comparison with previous studies and comments about changes in
diastolic dysfunction grade or lack thereof, should be added as this
can inform treatment decisions and predict future events of
admissions for heart failure and total mortality.88-93 Consideration
may be given to diastolic stress testing in borderline cases (see
section on diastolic stress test). Furthermore, right heart
catheterization may be needed in difficult cases to determine if
PCWP is elevated or if there is a discrepancy between right
ventricular (RV) and LV filling pressures indicating the presence of
pulmonary vascular disease.

Key Points
1. Conclusions on LV diastolic function should be included routinely in reports when

feasible, particularly in patients referred with symptoms of dyspnea or diagnosis of
heart failure.

2. The report should comment on LV filling pressures and the grade of LV diastolic

dysfunction. If available, comparison with previous studies is encouraged to detect

and comment on changes in diastolic function grade over time.
V. ESTIMATION OF LV FILLING PRESSURES IN SPECIFIC

CARDIOVASCULAR DISEASES

The following sections discuss the pathophysiology of disorders with
abnormal cardiac structure, valve disease and atrial arrhythmias,
which modify the relationship between indices of diastolic function
and LV filling pressure (Table 6). In some of the disorders the algo-
rithm outlined above has significant limitations. PASP estimated
from the TR jet, however, is a valid index of LAP in all conditions
mentioned, provided there is no evidence of pulmonary vascular or
parenchymal disease. In the absence of AF or atrial flutter, mitral valve
disease or heart transplantation, an increased LA volume with a
normal appearing right atrial size is a robust indicator of elevated
LAP. One significant limitation to this marker is if heart failure therapy
has resulted in normalization of pressures with persistent LA dilata-
tion. In this setting, the presence of increased TR velocity > 2.8 m/
sec is suggestive of elevated LAP.
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Figure 7 Example of normal findings from a young subject. Left shows normal LV size in parasternal long-axis view, with a normal
mitral inflow pattern and E/A ratio > 1 in middle panel. Lateral e0 velocity is normal at 12 cm/sec (left).
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A. Hypertrophic Cardiomyopathy

A comprehensive approach is recommended for assessment of LV
diastolic function and filling pressures in patients with hypertrophic
cardiomyopathy (HCM) (example shown in Figure 18). This includes
E/e0 ratio, LA volume index, pulmonary vein atrial reversal velocity,
and peak velocity of TR jet by CW Doppler.100-106,113,114 In general,
individual variables when used alone, have modest correlations with
LV filling pressures in patients with HCM, likely related to variability
in phenotype, muscle mass, amount of myocardial fiber disarray,
and obstructive versus nonobstructive physiology. This leads to
different combinations of altered relaxation and compliance and
resultant variations of mitral inflow patterns. Aside from assessment
of LV filling, 2D and Doppler indices of LV diastolic function
provide incremental prognostic information in this population. In
children with HCM, septal E/e0 ratio predicted adverse outcomes
including death, cardiac arrest and ventricular tachycardia.102 There
are similar results in adults with HCM, showing worse outcomes in pa-
tients with an enlarged left atrium, abnormal diastolic function de-
tected by E/e0 ratio, or restrictive LV filling.104-106,113,114

More recently, studies using STE have reported the association be-
tween LV systolic and diastolic strain, LA strain and LV diastolic func-
tion. Furthermore, they have provided mechanistic insights linking LV
function, including torsion and untwisting, to exercise tolerance.115-120

There is growing interest in studying the relation between early
diastolic vortices andLVfilling inHCM.121While promising, additional
studies and technical developments are needed before they can be
endorsed as routine measurements in patients with HCM.

Key Points
1. Variables recommended for evaluation of diastolic function in patients withHCMare

average E/e0 ratio (>14), LAvolume index (>34mL/m2), pulmonary vein atrial reversal
velocity (Ar-A duration $ 30 msec), and peak velocity of TR jet by CW Doppler

(>2.8 m/sec). The parameters can be applied irrespective of the presence or absence

of dynamic obstruction and MR, except for patients with more than moderate MR,

in whom only Ar-A duration and peak velocity of TR jet are still valid.

2. If more than half of the variables (total available variables three or four) meet the cut-

off values, then LAP is elevated and grade II diastolic dysfunction is present. If <50%

of the variables (total available variables three or four) meet the cutoff values, then

LAP is normal and grade I diastolic dysfunction is present. In case of 50% discordance

with two or four available variables, findings are inconclusive to estimate LAP. Estima-

tion of LAP is not recommended if there is only parameter with a satisfactory signal.

3. Grade III diastolic dysfunction is present in the presence of a restrictive filling pattern

and abnormally reduced mitral annular e0 velocity (septal <7 cm/sec, lateral <10 cm/

sec).

B. Restrictive Cardiomyopathy

Restrictive cardiomyopathies are composed of a heterogeneous
group of heart muscle diseases including idiopathic restrictive cardio-
myopathy, cardiac amyloidosis, and sarcoidosis.122 In the earlier
stages of cardiac amyloidosis, diastolic function can vary from grade
1 diastolic dysfunction with impaired relaxation and normal LV filling
pressures to grade 2 (pseudonormalization). In later stages, grade 3
diastolic dysfunction occurs when LV relaxation is impaired along
with markedly elevated LV filling pressures.107 There has been a
gradual evolution of the diastolic function techniques applied in
studying these patients, initially using mitral inflow and pulmonary
vein flow, to tissue Doppler and now STE, which can be used to mea-
sure strain and strain rate. The advanced stages of restrictive cardio-
myopathy, are characterized by typical restrictive physiology with a
dip and plateau pattern for early diastolic LV pressure changes with
time, mitral inflow E/A ratio > 2.5, DTof E velocity < 150 msec, iso-
volumic relaxation time (IVRT) < 50 msec,108,123 decreased septal
and lateral e0 velocities (3–4 cm/sec),124,125 but with a higher lateral
e0 compared with septal e0 velocity (unlike constrictive pericarditis,
in which septal e0 is often higher, or annulus reversus),126 E/e0 ratio >
14, as well as a markedly increased LA volume index (>50 mL/
m2)127,128. Figure 19 shows a validated algorithm from the Mayo
Clinic comparing constrictive pericarditis with restrictive cardiomyop-
athy. The presence of a normal annular e0 velocity in a patient referred
with heart failure diagnosis should raise suspicion of pericardial
constriction.

Grade 3 diastolic dysfunction is associated with a poor
outcome in patients with restrictive cardiomyopathy.109 It is
important to make the distinction between restrictive LV filling,
which can occur with other diseases such as coronary artery dis-
ease, dilated cardiomyopathy and HCM, and restrictive cardio-
myopathy. STE of LV myocardium in patients with cardiac
amyloidosis has shown a distinctive phenotype of apical sparing
(Figure 20) using a polar plot of LV longitudinal strain compared
with hypertensive heart disease, HCM, and aortic stenosis.129

Similar to tissue Doppler imaging, the ratio of LV free wall strain
to LV septal strain by STE is about 1 in patients with restrictive
cardiomyopathy, whereas it is usually <1 in patients with
constriction because of less deformation of the LV anterolateral
wall compared with the LV septum.130

Key Points
1. Patients with early disease usually have grade I diastolic dysfunction that progresses

to grade II as the severity of the disease advances.
2. In patients with advanced disease, grade III diastolic dysfunction is present and is

characterized by mitral inflow E/A ratio > 2.5, DT of E velocity < 150 msec, IVRT <

50 msec, and decreased septal and lateral e0 velocities (3–4 cm/sec).

3. Patients with constrictive pericarditis usually have septal e0 velocity higher than

lateral e0 velocity, or annulus reversus, and E/e0 ratio should not be used to estimate

LV filling pressures in patients with constrictive pericarditis.
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Figure 8 (A) Algorithm for diagnosis of LV diastolic dysfunction in subjects with normal LVEF. (B) Algorithm for estimation of LV filling
pressures and grading LV diastolic function in patients with depressed LVEFs and patients with myocardial disease and normal LVEF
after consideration of clinical and other 2D data.
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C. Valvular Heart Disease

i. Mitral Stenosis. In this condition, transmitral blood flow veloc-
ities and mitral annular dynamics are largely determined by the de-
gree of valvular disease and therefore of limited value as indicators
of LV disease. Typically, patients with mitral stenosis have normal
or reduced LV diastolic pressures, except for the rare occurrence
of coexisting myocardial disease. The same hemodynamic findings
are present in patients with other etiologies of LV inflow obstruc-
tion, such as prosthetic mitral valve, large LA tumor, cor triatriatum
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Figure 9 LV and RV pressure recordings along with mitral
inflow and tricuspid inflow obtained from a patient with
dilated cardiomyopathy. LV pressure recordings are shown
to the left with red arrows denoting LV pre-A pressure and
LVEDP. Both are increased with LV pre-A pressure at
19 mm Hg and LVEDP at 30 mm Hg. Mitral inflow (top) shows
restrictive filling pattern. In comparison, RV pressure record-
ings (right) show RV pre-A pressure at 8 mm Hg and RV
end-diastolic pressure (RVEDP) at 12 mm Hg. The corre-
sponding tricuspid inflow pattern (bottom) shows an impaired
relaxation pattern. In the presence of normal LV and RV filling
pressures and myocardial dysfunction, both tricuspid inflow
and mitral inflow reveal an impaired relaxation pattern.
Thus, the presence in this case of an impaired relaxation
pattern for tricuspid inflow and a restrictive filling pattern for
mitral inflow supports the conclusion that LV filling pressures
are elevated. Abbreviations as in other figures.
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sinustrum, and congenital mitral valve stenosis. Nevertheless, a
semiquantitative estimation of instantaneous LAP can be provided
in early and late diastole by Doppler variables. The shorter the
IVRT (corresponds to time interval between second heart sound
and mitral valve opening snap) and the higher the peak E-wave ve-
locity, the higher the early diastolic LAP. LAP is significantly
elevated at end-diastole if the mitral A velocity remains >1.5 m/
sec at this point.

The time interval between onset of mitral E velocity and annular
e0 velocity can be applied to estimate LV filling pressures in patients
with mitral valve disease. In the presence of impaired LV relaxa-
tion, the e0 velocity is not only reduced but also delayed such
that it occurs at the LA-LV pressure crossover point. In compari-
son, mitral E velocity occurs earlier with elevated LAP. Thus the
time interval between the onset of mitral E velocity and annular
e0 velocity is prolonged and can correct for the effect of LV relax-
ation on IVRT. IVRT/TE–e0 ratio correlates well with mean PCWP
and LAP in patients with mitral stenosis (Figure 21). However,
the E/e0 ratio is not useful.110

ii. MR. Primary MR leads to LA and LV enlargement and an in-
crease in the compliance of both chambers, which attenuates
the increase in LAP. If LA compensation is incomplete, mean
LAP and right-sided pressures increase, which is related to the
additional regurgitant volume, not to LV dysfunction. With LV dia-
stolic dysfunction, a myocardial component of increased filling
pressures is added over time. The sequence is opposite to that
seen in primary myocardial disease such as dilated cardiomyopa-
thy, which leads to increased filling pressures earlier on and later
to functional MR. Therefore, in patients with secondary MR,
echocardiographic correlates of increased filling pressures reflect
the combination of both myocardial and valvular disorders.
Moderate and severe MR usually lead to an elevation of peak E
velocity and a decrease in pulmonary venous systolic velocity
and thus the S/D ratio in pulmonary venous flow. In severe
MR, pulmonary venous flow reversal can be seen in late systole.
Thus, MR per se can induce changes in transmitral and pulmonary
venous flow patterns resembling advanced LV dysfunction, with
the possible exception of the difference in duration between Ar
and mitral A velocity.111 MR velocity recording by CW Doppler
can provide a highly specific, though not sensitive, sign of
increased LAP with early peaking and usually a reduced LV pres-
sure–LAP gradient. The utility of E/e0 in predicting LV filling pres-
sures in the setting of moderate or severe MR is more
complex.112,131,132 In patients with depressed EFs, an increased
E/e0 ratio has a direct significant relation with LAP and predicts
hospitalizations and mortality.112,132 E/e0 does not appear to be
useful in patients with primary MR and normal EFs, though
some investigators have noted a good correlation between E/e0

ratio and mean wedge pressure as well as PASP in this
population.133 IVRT and the ratio of IVRT to TE-�e correlate reason-
ably well with mean PCWP, regardless of EF.110 An IVRT/TE-�e

ratio < 3 readily predicts PCWP > 15 mm Hg in this patient sub-
group. In patients with AF and MR, use of matched intervals
(necessitating acquisition of a large number of cycles) or use of
‘‘index beats’’ is necessary.134 It is challenging to assess LV relaxa-
tion and LV filling pressures after mitral valve surgery-repair or
replacement, although time intervals and PA pressures could be
of value.

iii. MAC. MAC frequently accompanies hypertensive heart disease,
aortic sclerosis, coronary artery disease and chronic kidney disease
and is prevalent in elderly patients. In patients with moderate to se-
vere MAC, mitral orifice area is decreased, leading to increased dia-
stolic transmitral velocities, while lateral or posterior e0 may be
decreased due to restriction of the posterior mitral leaflet excur-
sion.135 Thus, an increase in E/e0 ratio occurs due to the mechanical
effect of mitral calcification. Since underlying conditions such as hy-
pertension may also cause diastolic dysfunction, separation of the ef-
fect of mitral calcification from that of LV diastolic dysfunction on E/e0

ratio may not be possible in the individual patient. It is not known if
septal e0 velocity or myocardial velocities distal to annular calcification
can be of value in these patients.

iv. Aortic Stenosis and Regurgitation. There are usually no
major challenges to the application of the guidelines in patients
with aortic stenosis, except for the coexistence of moderate to se-
vere MAC, for which the limitations noted in the previous section
apply. For patients with severe aortic regurgitation (AR), the AR jet
can interfere with the recording of mitral inflow velocities and
careful positioning of the sample volume is needed to avoid
contamination with the AR jet. In severe acute AR, the presence
of abbreviated LV diastolic filling period, premature closure of
the mitral valve, and diastolic MR indicate the presence of elevated
LV filling pressures. In chronic severe AR, the mitral inflow pattern
often shows predominant early diastolic filling with short DT of
mitral E velocity. There are limited data on the accuracy of
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Figure 10 Mitral inflow (left) and pulmonary venous flow (right) from a patient with HFrEF. Notice the increased E/A ratio >2 and
reduced S/D ratio in pulmonary venous flow. Both findings are consistent with increased LAP in this patient population.
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Figure 11 Septal tissue Doppler velocities from a patient with
HFrEF and ventricular dyssynchrony. Mitral annular e0 (early dia-
stolic annular velocity) should be distinguished from the
biphasic velocity during isovolumic relaxation (IVR) period.
Mitral annular late diastolic velocity (a0) follows the ‘‘P’’ wave.
Isovolumic contraction velocity (IVC) is biphasic. Systolic ejec-
tion velocity (s0) follows IVC velocity and precedes IVR velocity.

Figure 12 (Left) Mitral inflow from a patient with HFpEF. Mitral
inflow pattern is consistent with elevated LV filling pressures.
Notice the abbreviated mitral A velocity with short duration.
DT of mitral E velocity (Mdt) measured at 200 msec. This is
seen in patients with markedly delayed LV relaxation such that
LV diastolic pressure continues to decline after mitral valve
opening. (Right) Pulmonary venous flow from the same patient.
Notice the decreased S/D ratio and the increased amplitude and
velocity of Ar signal consistent with increased LVEDP. Abbrevi-
ations as in other figures.
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Figure 13 Mitral inflow from a patient with hypertensive heart
disease with normal EF. Patient has LV hypertrophy and a
moderately enlarged left atrium. Mitral inflow shows pseudonor-
mal LV filling pattern consistent with elevated LV filling pressures
and grade II diastolic dysfunction.
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estimation of LV filling pressures in patients with chronic severe
AR. In patients with AR, the presence of LA enlargement, average
E/e0 ratio > 14, and TR peak velocity > 2.8 m/sec support the
presence of increased LV filling pressures.

Key Points
1. Mitral stenosis renders assessment of LV diastolic function more challenging, but

IVRT, TE-e0 , and mitral inflow peak velocity at early and late diastole can be of value

in the semiquantitative prediction of mean LAP.
2. The time interval Ar-A and IVRT/TE-e0 ratio may be applied for estimation for predic-

tion of LV filling pressures in patients with MR and normal LVEF, whereas E/e0 ratio
may be considered only in patients with MR and depressed EF.

3. The guidelines in patients without valvular heart disease can be applied to patients

with aortic stenosis, irrespective of severity of valvular stenosis. This excludes pa-

tients with heavy MAC.

4. In patients with severe AR be it acute or chronic, premature closure of mitral valve,

diastolic MR, LA enlargement, average E/e0 ratio > 14, and TR peak velocity >

2.8 m/sec are consistent with elevated LV filling pressures.

D. Heart Transplantation

The transplanted heart is affected by many factors that influ-
ence LV diastolic function making the interpretation of diastolic
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Figure 14 Mitral inflow (left) and IVRT (right) from another patient with HFpEF and heart rate 60 beats/min. E velocity was 96 cm/sec
with A velocity of 65 cm/sec. Mid-diastolic flow (L velocity) is present because of the slow and impaired LV relaxation and the
increased LAP. The arrows in the right panel point to IVRT between aortic valve closure and mitral valve opening. IVRT was short
at 48 msec consistent with increased LAP.

p
ri
n
t
&

w
e
b
4
C
=
F
P
O

Figure 15 L velocity from a patient in sinus rhythm and increased LAP. Notice the presence of L velocity in mitral inflow and septal
tissue Doppler signals (arrows).
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function more difficult. First, the donor heart is denervated,
leading to sinus tachycardia with reduced heart rate vari-
ability.136 In turn, sinus tachycardia results in fusion of mitral
E and A velocities. The biatrial surgery technique usually results
in two intact SA nodes beating at different rates (donor and re-
maining right atrial tissue from recipient heart) which can each
affect mitral inflow causing beat to beat variability in mitral E
and A velocities. Furthermore, atrial function can be impaired
because of the midatrial anastomoses between the donor and
the recipient hearts. In comparison, the bicaval surgery tech-
nique may not impede atrial function.137 Pulmonary venous
flow is usually not helpful in assessing LV diastolic function
and filling pressures. The contraction of the remnant recipient
atrial tissue interacts with the systolic pulmonary forward flow
component when it occurs during systole and can lead to lower
S velocity, whereas pulmonary vein Ar velocity can be
markedly increased if recipient atrial contraction occurs at
end-diastole.

A restrictive appearing filling pattern in patients with preserved EFs
is a common finding after heart transplantation and is observed in pa-
tients with normal LV diastolic function as donor hearts are usually ob-
tained from healthy young individuals.138 It is most pronounced in
the early weeks after surgery and can change at follow-up.139,140

While LV diastolic pressures can be normal at rest, a large increase
in LVEDP has been noted during exercise.141

Similar considerations as described above also exist for e0 velocity
as it is influenced by translational motion of the heart. Of
note, myocardial tissue velocities are lowest early after surgery and
tend to increase during the following weeks and months, though
some studies noted that they were reduced 1 year after transplanta-
tion compared with a normal population.142-146 LV diastolic
dysfunction has often been described as a sensitive sign of early
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Figure 17 TR velocity (3.3 m/sec) by CW Doppler (left) and hepatic venous flow (right) from a patient with HFpEF. RV–to–right
atrial pressure gradient was 43 mm Hg and hepatic venous flow showed predominant forward flow during diastole (D), consis-
tent with elevated right atrial pressure (10–15 mm Hg). Thus, PASP was estimated at 53 to 58 mm Hg. In normal elderly subjects
without cardiac disease, predominant forward flow in hepatic veins occurs during systole. As right atrial mean pressure in-
creases, flow pattern shifts so most flow occurs during diastole. Furthermore, the atrial reversal signal (Ar) that occurs because
of right atrial contraction generating a positive pressure gradient between the right atrium and the hepatic veins increases in
amplitude and duration with increasing RA pressure as seen in this recording. (Nagueh SF, Kopelen HA, Zoghbi WA. Relation
of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circu-
lation 1996;93:1160–9; Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in
adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a
registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocar-
diogr 2010;23:685–713).
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Figure 16 LA stunning after cardioversion. On the day of the cardioversion, LA stunning leads tomarkedly reducedmitral A velocity of
19 cm/sec and an apparent ‘‘restrictive LV filling’’ on the basis of mitral E/A ratio. Three days later, LA function improves with
increased A velocity and a decreased E/A ratio consistent with impaired LV relaxation but normal LV filling pressures.
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graft rejection asmyocardial edema causes increased diastolic stiffness
and filling pressures in the presence of a normal EF (Figure 22). Later
on, myocardial fibrosis seen with chronic graft rejection can lead to a
restrictive LV filling pattern and markedly reduced annular velocities
(Figure 23). However, no single diastolic parameter appears reliable
enough to predict graft rejection.146 As in other diseases, PASP



Table 4 LV relaxation, filling pressures and 2D and Doppler
findings according to LV diastolic function

Normal Grade I Grade II Grade III

LV relaxation Normal Impaired Impaired Impaired

LAP Normal Low or normal Elevated Elevated

Mitral E/A ratio $0.8 #0.8 >0.8 to <2 >2

Average E/e0 ratio <10 <10 10–14 >14

Peak TR velocity

(m/sec)

<2.8 <2.8 >2.8 >2.8

LA volume index Normal Normal or
increased

Increased Increased

Table 5 Examples of conclusions on LV diastolic function
from clinical laboratories

Example 1 (conclusion would
contain an item from each of

1, 2, and 3)

1. LV relaxation impaired or
normal

2. LV filling pressures normal,

elevated or borderline
elevated

3. Grade I diastolic dysfunction

or grade II diastolic

dysfunction or grade III
diastolic dysfunction

Example 2 (conclusion would

contain one of the six options
shown to the right)

a. Normal diastolic function

b. Impaired LV relaxation,
normal LAP

c. Impaired LV relaxation, mildly

elevated LAP

d. Impaired LV relaxation,
elevated LAP

e. Restrictive LV filling pattern,

indicating markedly

elevated LAP
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estimation using the TR jet can be helpful as a surrogate measurement
of mean LAP in the absence of pulmonary disease.

Key Points
1. A restrictive appearing filling pattern in patients with preserved EFs is a common

finding after heart transplantation and is observed in patients with normal LV dia-
f. Indeterminate

Example 3 (conclusion would

contain one of the six options
shown to the right)

a. Normal diastolic function

b. Impaired LV relaxation,
normal LAP

c. Impaired LV relaxation,

increased LVEDP

d. Impaired LV relaxation,
elevated LAP

e. Restrictive LV filling pattern,

indicating markedly

elevated LAP
f. Indeterminate

Example 4 (conclusion would

contain one of the five options
shown to the right)

1. Normal diastolic function and

filling pressure
2. Grade 1 (impaired relaxation

with low to normal filling

pressure)

3. Grade 2 (moderate increase
in filling pressure)

4. Grade 3 (marked elevation in

filling pressure)

Example 5 (conclusion would

contain one of the three

options shown to the right)

1. Increased filling pressure

2. Normal filling pressure

3. Constrictive pericarditis

Example 6 (conclusion would
contain one of the three

options shown to the right)

1. Findings consistent with
diastolic dysfunction

2. Findings suggestive of

probable diastolic

dysfunction
3. Findings raise the possibility

of diastolic dysfunction.
stolic function as donor hearts are usually obtained from healthy young individuals.

2. No single diastolic parameter appears reliable enough to predict graft rejection. PASP

estimation using the TR jet can be helpful as a surrogatemeasurement ofmean LAP in

the absence of pulmonary disease.

E. Atrial Fibrillation

LV diastolic dysfunction causes LA dilatation, which can lead to
AF,147-149 and the presence of AF is not uncommon in patients
with heart failure. In patients with AF, Doppler assessment of LV
diastolic function is limited by the variability in cycle length, the
absence of organized atrial activity, and the frequent occurrence
of LA enlargement regardless of filling pressures. In general, when
LVEF is depressed in patients with AF, mitral DT (#160 msec) has
reasonable accuracy for the prediction of increased LV diastolic
pressures and adverse clinical outcomes.94,95 Other Doppler
measurements that can be applied include peak acceleration rate
of mitral E velocity ($1,900 cm/sec2), IVRT (#65 msec), DT of
pulmonary venous diastolic velocity (#220 msec), E/mitral Vp
(E/Vp; $1.4), and E/e0 ratio ($11).43,94-96 Similar to sinus
rhythm, the time interval between onset of mitral E and annular e0

velocity could be measured. The delay in annular e0 velocity
occurs in the setting of impaired LV relaxation and when
combined with ‘‘IVRT-IVRT/TE-e’’ ratio can be used to predict LV
filling pressures.150,151

It is critical to average several cardiac cycles and to use matched
RR intervals for both E and e0 velocities. This often poses important
limitations to the routine application of these measurements in
clinical practice. Recently the simultaneous recording of E and e0

velocities using a dual Doppler probe has made it possible to
analyze both the peak velocity as well as the timing of mitral E
and annular e0 velocities from the same cardiac cycle, which led
to improved accuracy in the estimation of LV filling pressure in
this patient population.97-99 In the absence of this system, one
can use velocity measurements from 10 consecutive cycles,
though velocities and time intervals averaged from three
nonconsecutive beats with cycle lengths within 10% to 20% of
the average heart rate are still useful.94 In addition, the variability
of mitral inflow velocity with the RR cycle length should be exam-
ined, as patients with increased filling pressures have less beat to
beat variation.94 Examples are shown in Figures 24–27.
Key Points
1. Peak TR velocity > 2.8 m/sec is suggestive of elevated LAP.

2. In patients with depressed LVEFs, mitral DT (#160 msec) has reasonable accuracy for
the prediction of increased LV diastolic pressures and adverse clinical outcomes.

3. In patients with incomplete TR jet other Doppler measurements can be applied,

including peak acceleration rate of mitral E velocity $ 1,900 cm/sec2, IVRT #

65 msec, DT of pulmonary venous diastolic velocity # 220 msec, E/Vp ratio $ 1.4,

and E/e0 ratio $ 11.

4. The variability ofmitral inflowvelocitywith the RR cycle length is of value in patients

with AF, as patients with increased filling pressures have less beat to beat variation.



Table 6 Assessment of LV filling pressures in special populations

Disease Echocardiographic measurements and cutoff values

AF43,94-99 Peak acceleration rate of mitral E velocity ($1,900 cm/sec2)

IVRT (#65 msec)

DT of pulmonary venous diastolic velocity (#220 msec)

E/Vp ratio ($1.4)
Septal E/e0 ratio ($11)

Sinus tachycardia41,44 Mitral inflow pattern with predominant early LV filling in patients with EFs <50%

IVRT #70 msec is specific (79%)
Pulmonary vein systolic filling fraction #40% is specific (88%)

Average E/e0 >14 (this cutoff has highest specificity but low sensitivity)

When E and A velocities are partially or completely fused, the presence of a compensatory period after premature

beats often leads to separation of E and A velocities which can be used for assessment of diastolic function

HCM100-106 Average E/e0 (>14)
Ar-A ($30 msec)

TR peak velocity (>2.8 m/sec)
LA volume (>34 mL/m2).

Restrictive

cardiomyopathy13,107-109
DT (<140 msec)

Mitral E/A (>2.5)

IVRT (<50 msec has high specificity)
Average E/e0 (>14)

Noncardiac pulmonary

hypertension32
Lateral E/e0 can be applied to determine whether a cardiac etiology is the underlying reason for the increased

pulmonary artery pressures
When cardiac etiology is present, lateral E/e0 is >13, whereas in patients with pulmonary hypertension due to a

noncardiac etiology, lateral E/e0 is <8

Mitral stenosis110 IVRT (<60 msec has high specificity)

IVRT/TE-e0 (<4.2)
Mitral A velocity (>1.5 m/sec)

MR110-112 Ar-A ($30 msec)

IVRT (<60 msec has high specificity)
IVRT/TE-e0 (<5.6) may be applied for the prediction of LV filling pressures in patients with MR and normal EFs

Average E/e0 (>14) may be considered only in patients with depressed EFs

A comprehensive approach is recommended in all of the above settings, which includes estimation of PASP using peak velocity of TR jet (>2.8 m/
sec) and LA maximum volume index (>34 mL/m2). Conclusions should not be based on single measurements. Specificity comments refer to pre-

dicting filling pressures > 15 mmHg. Note that the role of LA maximum volume index to draw inferences on LAP is limited in athletes, patients with

AF, and/or those with mitral valve disease.
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F. Atrioventricular Block and Pacing

In the normal heart, sinus node depolarization spreads through
the right and LA myocytes, arriving at the atrioventricular (AV)
node within 200 msec. A properly timed atrial contraction can
increase cardiac output by 25% to 30%. Electrical activation
then travels roughly twice as fast through the specialized cardiac
conduction system, proceeding down the His-Purkinje system
and right and left bundles, which activate both ventricles simul-
taneously starting at the endocardium and spreading to the
epicardium; with electrical repolarization taking place from
epicardium to endocardium. Normal subjects have near simulta-
neous contraction and relaxation of all ventricular segments,
which is demonstrated as a synchronous systolic inward and out-
ward diastolic movement of both ventricles. Abnormities of the
cardiac conduction system due to disease, aging, drugs, or pacing
can adversely affect AV synchrony and synchronous LV contrac-
tion and relaxation, which may reduce functional aerobic capac-
ity by altering LV systolic and diastolic function, and thus the
diastolic variables used to assess diastolic function. If the PR in-
terval is too short, atrial filling is terminated early by ventricular
contraction thus reducing mitral A duration, LV end-diastolic vol-
ume, and cardiac output. A first-degree AV block of 200 to
280 msec is usually well tolerated if the LVEF and heart rate
are normal. However, in patients with shortened diastolic
filling periods due to markedly impaired LV relaxation, faster
heart rates, bundle branch block or ventricular pacing, a first-
degree AV block of >280 msec usually results in ‘‘fusion’’ of E
and A velocities (Figure 27). If atrial contraction occurs before
early diastolic mitral flow velocity has decreased to #20 cm/
sec, the E/A velocity ratio is reduced because of a higher A-
wave velocity.152 This ‘‘fusion’’ of early and late diastolic filling
with an E/A velocity ratio of <1 can be misinterpreted as
impaired relaxation filling pattern (Figure 28). In addition with
mitral E and A fusion, the larger atrial stroke volume increases
the mitral A-wave duration and pulmonary venous peak systolic
velocity and time-velocity integral. Diastolic fusion of filling
waves can also limit exercise capacity because LV end-diastolic
volume is reduced, lowering maximal cardiac output. At PR
values > 320 msec, AV synchrony becomes ‘‘unphysiologic’’
because of marked E- and A-wave fusion, or filling only with
atrial contraction (uniphasic A wave), and diastolic MR is
seen.153 In these patients maximal exercise capacity is almost
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Figure 18 (A) Two-dimensional imaging of a patient with HCM (left top) in the parasternal long-axis view sowing systolic anterior
motion of the mitral valve (arrow). Mitral inflow shows an E/A ratio > 1 (right top). Septal (bottom left) and lateral (bottom right)
tissue Doppler early (e0) and late (a0) diastolic velocities are markedly reduced consistent with severely impaired LV relaxation.
Average E/e0 ratio is >14, consistent with elevated mean LAP. Abbreviations as in other figures. (B) Peak TR velocity (3.42 m/
sec) by CW Doppler from the same patient in (A). Peak RV–to–right atrial systolic pressure gradient is 47 mm Hg. Thus, PASP is
$47 mm Hg.
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always limited because of the inability to increase LV filling
with increasing heart rate. If only the mitral A wave is present,
only TR velocity can be used as a possible indicator of LV filling
pressures.
A right bundle branch block results in delayed activation of the
RV myocardium as electrical depolarization must spread through
myocytes instead of the specialized conduction system. Although
minor changes in LV and RV synchrony are observed no studies
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Figure 19 Algorithm comparing constrictive pericarditis and restrictive cardiomyopathy. Note restriction is associated with elevated
E/A ratio, short DT and decreased mitral annular velocity (<6 cm/sec). The figure is based on data fromWelch TD, Ling LH, Espinosa
RE, et al. Echocardiographic diagnosis of constrictive pericarditis: Mayo Clinic criteria. Circ Cardiovasc Imaging 2014;7:526–34.
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have convincingly shown that this leads to clinically meaningful
changes in LV diastolic variables or exercise capacity. This is
also true of left anterior or right posterior hemiblock. In contrast,
left bundle branch block is frequently associated with organic
heart disease and impaired LV diastolic function. As with other
disease states with impaired relaxation, the effect on mitral
filling variables is heavily influenced by LV stiffness and loading
conditions. With normal LAP, an impaired LV relaxation filling
pattern is seen, while pseudonormal and restrictive patterns
occur with progressive increases in LV stiffness and LAP. As
long as no fusion of mitral E and A velocities occurs, the variables
used to evaluate diastolic function and filling pressures likely
remain valid.

The effect of cardiac pacing on LV systolic and diastolic func-
tion varies by patient group. Chronic RV pacing is known to be
deleterious by inducing LV dyssynchrony, leading to a reduction
in LV ejection fraction, stroke volume, impaired LV filling and an
increased incidence of heart failure and AF.154 Patients who
mostly need atrial pacing with rare RV pacing are believed to
have no alterations in systolic and diastolic function. In patients
with AV delay, pacemaker settings are often set with a long AV
delay to encourage fusion or native QRS beats to minimize RV
pacing. When this requires an excessively long PR interval, E
and A velocities fuse and diastolic MR may be seen. As discussed
previously, the alteration in E and A velocities and pulmonary
venous flow variables limits their clinical application for diastolic
function assessment in this setting. There are few studies that
have looked at the utility of mitral annular velocities in this setting
and it appears that their accuracy is less in the presence of left
bundle branch block, RV pacing, and in patients who have
received cardiac resynchronization therapy.67,155

Key Points
1. In patients with first degree AV block, the variables used to evaluate diastolic function

and filling pressures likely remain valid as long as there is no fusion of mitral E and A
velocities.

2. The accuracy of mitral annular velocities and E/e0 ratio is less in the presence of left

bundle branch block, RV pacing, and in patients who have received cardiac resynch-

ronization therapy.

3. If only mitral A velocity is present, only TR peak velocity (>2.8 m/sec) can be used as

an indicator of LV filling pressures.

VI. DIASTOLIC STRESS TEST

Exercise echocardiography156 is usually performed to detect
reduced LV systolic and/or diastolic reserve capacity in the setting
of coronary disease or diastolic dysfunction, as patients with diastolic
dysfunction may have a similar hemodynamic profile (in terms of
cardiac output and filling pressure) at rest as healthy individuals
who have normal diastolic function. When normal subjects exercise,
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Figure 20 Restrictive physiology in advanced cardiac amyloidosis showing (left upper) elevated E/A ratio and short DT,
decreased mitral annular septal velocities (left lower) and lateral velocities (right lower) and apical sparing on deformation imag-
ing (right upper).
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they are able to increase stroke volume without significantly
increasing filling pressures because of augmented myocardial relax-
ation along with more powerful early diastolic suction. Reduced LV
relaxation is one of the earliest manifestations of myocardial
dysfunction. Myocardial relaxation is consistently reduced in all
forms of myocardial disease, including hypertensive heart disease,
myocardial ischemia and HCM.157 More important, patients with
diastolic dysfunction may not be able to augment myocardial relax-
ation with exercise compared with normal subjects (Figure 29).
Hence, these patients can only achieve the required cardiac output
at the expense of increased LV filling pressures. In normal subjects,
mitral early diastolic E velocity increases with the augmented LV
suction. Mitral annular e0 velocity likewise increases proportionally
with E velocity with exercise so that E/e0 ratio remains unchanged
from resting state to exercise.158 Normal E/e0 values have been pub-
lished for middle-age and younger age subjects using treadmill and
bicycle exercise with remarkably similar values of 6 to 8 at rest and
with exercise.159,160 Previous studies showed exercise diastolic
parameters correlate better with exercise capacity than resting
parameters. Overall, the faster the myocardial relaxation (e0) is,
the higher the exercise capacity. Since augmentation of
myocardial relaxation as reflected in e0 velocity is limited in
patients with diastolic dysfunction, the E/e0 ratio increases with
exercise. Several studies have shown a good correlation between
E/e0 ratio and invasively obtained pulmonary capillary pressure,
LAP or LV mean diastolic pressure with variable levels of effort,
including day-to-day activity as well as supine bike exercise in the
catheterization laboratory.161-163
A. Indications

Diastolic stress testing is indicated when resting echocardiogra-
phy does not explain the symptoms of heart failure or dyspnea,
especially with exertion. In general, patients with completely
normal hearts and diastolic function at rest with preserved e0 ve-
locity (>7 cm/sec for septal e0, >10 cm/sec for lateral e0) need
not undergo stress testing as it is highly unlikely that they will
develop diastolic dysfunction and elevated filling pressures
with exercise. Likewise, patients with abnormal findings at
baseline consistent with elevated LV filling pressures should
not be referred for stress testing as the cardiac etiology for dys-
pnea has already been established and their filling pressures
will almost certainly increase further with exercise. The most
appropriate patient population for diastolic exercise testing is
the group of patients with grade 1 diastolic dysfunction, which
indicates delayed myocardial relaxation and normal LA mean
pressure at rest.
B. Performance

Diastolic stress testing is best performed with exercise and not using
dobutamine as the administration of the drug does not simulate the
day-to-day physiologic stress. It is easier to perform the test using su-
pine bike protocol which allows ample time to acquire 2D and
Doppler data. During the supine bicycle test, 2D images, mitral
inflow velocities, mitral annulus tissue Doppler velocities, and
peak TR velocity by CW Doppler are acquired at baseline, during
each stage including peak exercise and in recovery. In addition,
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Figure 21 Patient with mitral stenosis and LV diastolic dysfunction. (A) Color Doppler flow across stenotic mitral valve
showing flow acceleration zone (left) and CW Doppler (right) of forward diastolic mitral inflow showing increased peak
velocity (1.5 m/sec) and gradient (peak gradient = 8 mm Hg and mean gradient = 3.4 mm Hg) across the stenotic mitral
valve. (B) TR jet by CW Doppler (left) showing RV–to–right atrial pressure gradient of 49 mm Hg. Hepatic venous flow
(right) shows forward flow only in diastole (D) consistent with increased right atrial pressure. Together, there is evidence of
pulmonary hypertension.
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diastolic stress testing can be part of exercise treadmill testing and
data are acquired at baseline and in early recovery. Of note, mitral
inflow and annular early and late diastolic velocities are frequently
fused at peak exercise. This is particularly true during treadmill tests
wherein patients usually achieve higher heart rates than those
reached during supine bike testing. Nevertheless, it is possible to ac-
quire Doppler signals later during recovery when the heart rate is
slower and merging is less of a problem. This applies to both modal-
ities of stress testing.
When the indications for stress testing are chest pain and
dyspnea, including patients with known or suspected coronary
artery disease, it is important to prioritize the collection of 2D
images for wall motion analysis. If echocardiographic contrast
is used for LV cavity opacification, tissue Doppler signals are
not useful and only TR velocity can be of value. The provider
can consider two separate tests in this setting. Whether
contrast is used or not, one should proceed immediately after
treadmill exercise is terminated to acquire 2D images so as to
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Figure 21 (continued). (C) Mitral inflow (top) and septal mitral
annulus tissue Doppler velocities (bottom). Notice the delayed
e0 velocity such that mitral E begins before annular e0 velocity
(TE-e0 = 49 msec). Abbreviations as in other figures.
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ideally visualize all LV segments within 60 sec for assessment
of myocardial ischemia. Subsequently, Doppler echocardiogra-
phy can be obtained when there is a separation of early and
late diastolic mitral flow and annular velocities. If merging is
noted still, one should proceed to record peak TR velocity by
CW Doppler and then reattempt recording mitral inflow and
annular tissue Doppler velocities when the heart rate has
decreased further.
C. Interpretation

The successful acquisition of Doppler signals during exercise
and the interpretation of the diastolic stress test require a higher
level of experience than that needed for evaluation of diastolic
function at rest. The test is considered definitely abnormal indi-
cating diastolic dysfunction when all of the following three
conditions are met: average E/e0 > 14 or septal E/e0 ratio > 15
with exercise, peak TR velocity > 2.8 m/sec with exercise and
septal e0 velocity is < 7 cm/sec or if only lateral velocity is ac-
quired, lateral e0 < 10 cm/sec at baseline. The results are normal
when average (or septal) E/e0 ratio is <10 with exercise and peak
TR velocity is <2.8 m/sec with exercise. One should be cautious
in drawing conclusions on the basis of an isolated increase in
exercise peak TR velocity as normal subjects can have a signifi-
cant increase in peak TR velocity related to the increased pulmo-
nary blood flow. In the absence of these results, the test is
considered indeterminate. In these patients, an invasive hemody-
namic investigation, including the use of exercise, maybe neces-
sary if clinical assessment warrants determination of LV filling
pressures.
D. Detection of Early Myocardial Disease and Prognosis

There is a paucity of data on the prognostic utility of diastolic
stress testing. It has been demonstrated that increased LV filling
pressure (E/e0 > 13) with exercise has an incremental prognostic
power to clinical parameters as well as 2D findings diagnostic of
myocardial ischemia.164 Regarding detection of subclinical dis-
ease, the increment in systolic and diastolic longitudinal velocities
of the mitral annulus is generally reduced in patients with
myocardial disease as in patients with diabetes mellitus
compared with control subjects165 and exercise induced diastolic
dysfunction appears promising in identifying these patients for
targeted treatment. Although the use of dobutamine for diastolic
stress testing is discouraged, one report noted that the presence
of a persistent restrictive LV filling pattern with dobutamine
was associated with poor long-term outcomes in patients with
ischemic cardiomyopathy.166

Key Points
1. Diastolic stress testing is indicated in patients with dyspnea and grade 1 dia-

stolic dysfunction at rest. It is performed using supine bike or treadmill stress
testing.

2. At rest, mitral E and annular e0 velocities should be recorded, along with the

peak velocity of TR jet from multiple windows. The same parameters are re-

corded during exercise or 1 to 2 min after termination of exercise when E

and A velocities are not merged, because increased filling pressures usually per-

sist for few minutes.

4. The test is considered positive when all of the following three conditions aremet dur-

ing exercise: average E/e0 > 14 or septal E/e0 ratio > 15, peak TR velocity > 2.8 m/sec

and septal e0 velocity < 7 cm/sec.
VII. NOVEL INDICES OF LV DIASTOLIC FUNCTION

Several indices of LV and LA systolic and diastolic function have
been proposed in recent years as indices of LV relaxation and LV
and LA filling pressures. In general, patients with HFpEF usually
have abnormally depressed LV GLS such that LVEDP varies
directly with LV GLS. Lower absolute value for GLS denotes
more impaired LV global longitudinal function. However, there
is wide scatter in such data so the relation cannot be used for esti-
mation of LV filling pressures. LV global longitudinal diastolic
strain rate measurements during the isovolumic relaxation period
and during early diastole by STE have a significant association
with the time constant of LV relaxation (t). These novel parame-
ters have been used in conjunction with mitral E velocity to esti-
mate LV filling pressures and to predict outcomes in several
disease states.167-174 Notwithstanding the encouraging results
reported by several investigators, the technical challenges and
the variability in strain rate measurements on the basis of the
ultrasound system and the software used for analysis limit day-
to-day application of these parameters.

LV untwisting rate175,176 is another parameter that has garnered
interest as a surrogate of LV relaxation.177,178 Both animal and
human studies have shown that LV relaxation is not the sole
determinant of this measurement. LV filling pressures, LV recoil
and thus LV systolic function affect it as well.179-183 In fact, there
are several studies that have shown normal LV untwisting rate in
patients with HFpEF. However, the timing of peak untwisting
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Figure 22 Mitral inflow (top) and septal (bottom left) and lateral (bottom right) mitral annular velocities by tissue Doppler from a patient
with heart transplantation and LV diastolic dysfunction. Notice the reduced septal and lateral e0 velocities (5–6 cm/sec). Abbreviations
as in other figures.
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Figure 23 Mitral inflow (top left: pulsed-wave Doppler of mitral inflow at level of mitral annulus; top right: pulsed-wave Doppler
of mitral inflow at level of mitral valve tips) from another heart transplantation patient in a ventricular paced rhythm and with
severely depressed LV systolic function and diastolic dysfunction (bottom: markedly reduced septal e0 velocity at 2–3 cm/
sec). Notice the presence of short DT of mitral E velocity (<150 msec), abbreviated diastolic flow duration with premature
termination of forward flow. There is also diastolic MR (arrows). All of the above findings are consistent with markedly elevated
LV filling pressures, which includes LVEDP. Abbreviations as in other figures.
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Figure 24 Doppler recording from a patient with atrial flutter.
Notice the presence of flutter waves (F) and diastolic MR (ar-
rows).
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rate can be of more value in diagnosing patients with diastolic
dysfunction and normal LV volumes and EF.177,182 In the latter
group of patients, delayed peak of LV untwisting rate is often
present as might be expected with delayed LV relaxation. Given
the complexity of the measurement and the difficulty in
deciphering the contribution of each of the underlying variables
that affect it, more studies are needed to prove it has a role in
the day-to-day clinical practice.

Recently there have been a number of observational studies
demonstrating an inverse correlation between LA systolic strain
and mean wedge pressure. It appears that the relation is better
in patients with HFrEF, though significant correlations were also
noted in patients with HFpEF.184 LA systolic strain can be com-
bined with invasive and noninvasive measurements of LAP to es-
timate LA stiffness, which appears to be a promising variable in
distinguishing patients with HFpEF from those with diastolic
dysfunction who are not in heart failure.185 Likewise, assessment
of LA conduit function appears promising.186 Although prom-
ising, there are technical challenges for accurate LA strain mea-
surements in patients with marked LA enlargement and LA
areas with echo dropout.

Key Points
1. LV global longitudinal diastolic strain rate measurements during the isovolumic

relaxation period and during early diastole by STE have a significant association
with the time constant of LV relaxation (t). These parameters have been used in

conjunction with mitral E velocity to estimate LV filling pressures and to predict

outcome in several disease states.

2. The timing of peak untwisting rate can be of value in diagnosing patients with dia-

stolic dysfunction and normal LV volumes and EF. In the latter group of patients, de-

layed peak of LV untwisting rate is often present.

3. An inverse correlation is present between LA systolic strain and mean wedge

pressure. Although promising, there are technical limitations, and experience

is essential.
VIII. DIASTOLIC DOPPLER AND 2D IMAGING VARIABLES

FOR PROGNOSIS IN PATIENTS WITH HFREF

Diastolic dysfunction with impaired LV relaxation develops early
in most cardiac diseases and can progress to include increased
LV stiffness which leads to the elevation of LV filling pressures.
Echocardiographic measurements of diastolic function reflect
tissue changes and therefore provide important prognostic infor-
mation. Clinical studies have shown the association of short
mitral DT (indicating increased LV chamber stiffness) with heart
failure symptoms, death and hospitalization in patients presenting
with acute myocardial infarction and those with HFrEF. In this
population, DT provided incremental prognostic information to
clinical parameters, wall motion score index and LVEF.73-86,88-91

Importantly, a meta-analysis of 12 post–acute myocardial infarc-
tion studies involving 1,286 patients confirmed the prognostic
power of restrictive diastolic filling in patients with LV dysfunc-
tion,86 as did an echocardiographic substudy of 620 patients
with acute myocardial infarction from the OASIS-6 study.187

In addition, the less abnormal pseudonormal filling pattern
has also been shown to portend poor outcomes in patients
with heart failure, which was similar to that seen with restrictive
LV filling in some studies.188 Pulmonary venous velocities189-191

and Vp30,192-194 were less frequently examined but were still
predictive of clinical events. Given the variability in measuring
DT, Vp, and pulmonary venous flow velocity duration, more
recent studies have examined the prognostic power of E/e0

ratio. Several studies have shown that e0 velocity and E/e0

ratio are highly predictive of adverse events after acute
myocardial infarction and in patients with and without heart
failure.102,132,194-204 A recent study has shown that low values
of both global tissue Doppler–derived mitral annular s0 and e0

velocities were independent predictors of higher risk for death
in patients after myocardial infarction.205 Doppler-estimated
PASP has also been shown to be a robust predictor of outcome
in heart failure patients.206,207 Likewise, increased LA and right
atrial volume indices have been shown to portend an adverse
prognosis in patients with myocardial infarction and heart
failure.208-211

More recently, novel echocardiographic indices (longitudinal and
circumferential strain and diastolic strain rate by STE) have been
shown to predict outcomes in patients after myocardial infarction,
and in patients with systolic heart failure, above and beyond LVEF
and E/e0 ratio.172-174,212-216 Similarly, LA strain, a measure of LA
deformation related to LAP, has also been shown to portend an
adverse prognosis in patients with myocardial infarction that is
incremental to LA maximum volume index.217,218

Key Points
1. Mitral inflow velocities and pulmonary vein velocities and time intervals provide

important prognostic data in patients with LV systolic dysfunction that is incremen-

tal to clinical and LV volumetric variables.
2. Mitral annular velocities, including E/e0 ratio, have likewise been reported to predict

outcomes in these patient groups.

3. Grade II or grade III diastolic dysfunction that does not improve despite adequate

medical therapy are highly predictive of worse outcomes in this patient population.

4. There is growing literature showing LV strain and diastolic strain rate signals as well as

LA strain providing incremental prognostic information in several disease states,

including patients presenting with acute myocardial infarction, AF and HFrEF.
IX. PREDICTION OF OUTCOMES IN PATIENTS WITH HFPEF

In patients with HFpEF, the prognostic relevance of diastolic
dysfunction has been evaluated in a framework, including clinical,
laboratory and echocardiographic indicators of prognosis and
outcome. For clinical and laboratory variables, the most powerful
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Figure 25 Doppler recordings from a patient with AF and elevated LV filling pressures. Mitral inflow (top left) shows increased peak
diastolic velocity (E) at 90 to 100 cm/sec and increased acceleration rate. L velocity is seen in the mitral inflow signal (arrow). TR peak
velocity (top right) is y 3.2 m/sec, corresponding to RV–to–right atrial pressure gradient of 42 mm Hg and thus increased PASP.
Septal (bottom left) and lateral (bottom right) annular diastolic velocities aremarkedly reducedwith an average E/e0 ratioy 30. Collec-
tively, the above findings are consistent with increased LV filling pressures.
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Figure 26 Doppler recordings from a patient with increased LV filling pressures. Notice the increased peak velocity and acceleration
rate of the diastolic forward flow signal (left). IVRT is short at 50 ms (right). Arrows point to diastolic MR which is consistent with
increased LVEDP.
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Figure 27 Mitral inflow in a patient with a first-degree AV block.
Noticemerging ofmitral E and A velocities and the shortened dia-
stolic filling period. Mitral A velocity ends before end-diastole (ar-
row) and leads to an abbreviated diastolic filling period.
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prognostic parameters were N-terminal pro–B-type natriuretic
peptide, age, diabetes mellitus and previous hospitalization for
heart failure in the I-PRESERVE study. Other independent factors
associated with poor outcome were quality of life, chronic
obstructive lung disease, neutrophil count, heart rate and esti-
mated glomerular filtration rate.219 Similarly, in the Karolinska-
Rennes (KAREN) study, the independent predictors of prognosis
were age, history of noncardiovascular syncope (a proxy for
frailty), valvular heart disease, anemia, lower sodium, and higher
potassium levels (impaired renal function). Of note, the use of
renin–angiotensin system antagonists and mineralocorticoid re-
ceptor antagonists independently predicted improved prog-
nosis.220 Other studies looked at the value of specific
parameters such as worsening of renal function (I-PRESERVE
data), albuminuria independently from renal function, and
anemia.221-223
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Figure 28 Effect of heart rate on merging of E and A velocities and need to consider mitral velocity at onset of A. Left panel
recording was obtained at heart rate of 82/min with mitral velocity at onset of A exceeding 20 cm/sec (arrow), which if not consid-
ered (subtracted from peak A velocity) results in the erroneous conclusion of impaired relaxation pattern. Right panelwas obtained
from the same patient at heart rate of 65 beats/min in whommitral velocity at onset of A is < 20 cm/sec. The right panel shows that
the patient indeed has pseudonormal LV filling.
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Figure 29 Mitral septal annulus (left), mitral inflow (middle), and TR velocity (right) at rest (top) and immediately after treadmill
exercise test (bottom). It shows E/e0 of 10 and normal PASP at rest. With exercise, e0 remains the same and E
velocity increased such that E/e0 ratio increased to 19 along with an increase of PASP to $49 mm Hg with TR velocity of
3.5 m/sec.
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For echocardiographic parameters, RV dysfunction was present
in a significant subset of patients with HFpEF from Olmsted
County, Minnesota, and was associated with worse outcomes.
Importantly, RV dysfunction provided important prognostic infor-
mation, which was independent from the prognostic information
of PASP.224 In the I-PRESERVE echocardiographic substudy, LV
mass and LA size remained independently associated with an
increased risk of morbidity and mortality.225 In the TOPCAT
echocardiographic substudy, neither LV volumes nor EF was pre-
dictive of worse outcomes. However, LV hypertrophy, septal E/e0

ratio, and TR peak velocity were predictive of outcome beyond
clinical and laboratory characteristics. Because LV hypertrophy,
elevated filling pressures, and elevated PASP frequently coexist,
a greater number of these abnormalities is associated with a
higher risk for incident hospitalization for heart failure226 as is
the presence of a reduced GLS.227 Another potentially useful
parameter is the pulmonary vein S/D ratio, which proved to
have an added prognostic significance in an observational



Figure 30 A forward and a backward-traveling (reflected) wave contribute to pressure changes in the central aorta. In the
young and healthy subject on the left, the backward-traveling wave arrives at end-systole, contributes to closing the aortic
valve and to increasing diastolic perfusion pressure. In the hypertensive subject on the right, the backward-traveling wave
reaches the proximal aorta in early systole and contributes to the late systolic peak in pressure. The magnitude of the re-
flected wave (and the late systolic pressure) has a well-validated and independent prognostic significance as summarized
in the guidelines.
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study,228 likely related to the dynamics of systolic pulmonary
venous flow, which are determined by mechanisms that are
different from those that affect diastolic venous flow velocities.229

These observations have triggered interest in further study of ex-
isting and novel echocardiographic parameters.230

Arterial function with its resistive and pulsatile aspects may
further refine the prognostic evaluation of patients with HFpEF.
In general, the best validated parameter is pulse-wave velocity.231

An emerging parameter is pathologic wave reflection in the
arterial tree (Figure 30), and hence late systolic wall stress.232

The magnitude of wave reflection appears to be independently
associated with diastolic dysfunction233-235 and increased LV
mass.236 It is an independent predictor of cardiovascular events,
specifically incident heart failure237 and mortality.238 The prog-
nostic value of wave reflection is independent of and as potent
as systolic blood pressure. Late systolic wall stress is associated
with population characteristics opposite to those seen with
early systolic wall stress. This provides an original, novel clue to
distinct hemodynamic triggers of physiologic and pathologic hy-
pertrophy including diastolic dysfunction. Of note, early systolic
load triggers physiologic adaptations, while late systolic load in-
duces maladaptive cardiac changes that are associated with
adverse outcomes.

Key Points

1. Echocardiographic data adds incremental prognostic information in patients with

HFpEF. They include LV hypertrophy, LA volumes, E/e0 ratio, peak velocity of TR
jet, RV function, and GLS.

2. Arterial function with its resistive and pulsatile aspects further refines the prognostic

evaluation of patients with HFpEF.
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